Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree
https://doi.org/10.17586/2220-8054-2016-7-5-893-899
Abstract
In this paper, we consider a model with logarithmical potential and with the set [0, 1] of spin values, on a Cayley tree Гk of the order k. In the case k = 2, 3, we shall prove that, there is a unique translation-invariant splitting Gibbs measure for this model. For the case k = 4, we show that there are three translation-invariant Gibbs measures for this model.
About the Authors
Yu. Kh. EshkabilovUzbekistan
Tashkent
Sh. P. Bobonazarov
Uzbekistan
Tashkent
R. I. Teshaboev
Uzbekistan
Termez
References
1. Bleher P.M.,Ganikhodjaev N.N. On pure phases of the Ising model on the Bethe lattice. Theor.Probab. Appl., 1990, 35, P.216–227.
2. Bleher P.M.,Ruiz J.,Zagrebnov V.A. On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. Journ. Statist. Phys., 1995, 79, P.473–482.
3. Eshkabilov Yu. Kh.,Haydarov F.H., Rozikov U.A. Non-uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree. J.Stat. Phys., 2012, 147, P.779–794.
4. Eshkabilov Yu.Kh, Haydarov F.H.,Rozikov U.A. UniquenessofGibbsMeasureforModelsWithUncountableSetofSpinValuesona CayleyTree.Math.Phys.Anal.Geom.,2013,16,P.1–17.
5. Eshkabilov Yu.Kh.,Rozikov U.A.,Botirov G.I.Phase Transitions for a Model with Uncountable Set of Spin Values on a Cayley Tree. Lobachevskii Journal of Mathematics, 2013, 34(3), P.256–263.
6. Ganikhodjaev N.N.On pure phases of the ferromagnet Potts with three states on the Bethe lattice of order two. Theor. Math. Phys., 1990, 85, P.163–175.
7. Ganikhodjaev N. N.,Rozikov U.A. Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree. Theor. and Math.Phys., 1997, 111, P.480–486.
8. Ganikhodjaev N.N., Rozikov U.A. The Potts model with countable set of spin values on a Cayley Tree. Letters Math. Phys., 2006, 75, P.99–109.
9. Ganikhodjaev N.N.,Rozikov U.A. On Ising model with four competing interactions on Cayley tree. Math. Phys. Anal. Geom., 2009, 12, P.141–156.
10. Preston C.Gibbs states on countable sets.Cambridge University Press, London, 1974.
11. Rozikov U.A. Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions. Theor.and Math.Phys., 1997, 112, P.929–933.
12. Rozikov U. A.,Eshkabilov Yu. Kh.On models with uncountable set of spin values on a Cayley tree: Integral equations. Math. Phys. Anal. Geom., 2010, 13, P.275–286.
13. Sinai Ya.G. Theory of phase transitions: Rigorous Results. Pergamon, Oxford, 1982.
14. Spitzer F. Markov random fields on an infinite tree. Ann. Prob.,1975, 3, P.387–398.
15. Suhov Y.M., Rozikov U.A. Ahard-core model on a Cayley tree: an example of a loss network. Queueing Syst.,2004, 46, P.197–212.
16. Zachary S. Countable state space Markov random fields and Markov chains on trees. Ann.Prob., 1983, 11, P.894–903
Review
For citations:
Eshkabilov Yu.Kh., Bobonazarov Sh.P., Teshaboev R.I. Translation-invariant Gibbs measures for a model with logarithmic potential on a Cayley tree. Nanosystems: Physics, Chemistry, Mathematics. 2016;7(5):893-899. https://doi.org/10.17586/2220-8054-2016-7-5-893-899