Synthesis and photocatalytic activity of quasi-one-dimensional (1-D) solid solutions Ti1-xMxO2-2x/2 (M(III)= Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III) and Sm(III), 0≤x≤0.1)
Abstract
Quasi-one-dimensional (1–D) solid solutions Ti1−xMxO2−x/2 (M(III)=Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III), Sm(III), 0 < x ≤ 0.1) with the anatase structure have been synthesized by heating glycolate Ti1−xMx(OCH2CH2O)2−x/2 in air at a temperature above 450 ◦C. A method was proposed for the production of iron-and carbon-doped titanium dioxide with the anatase structure Ti1−xFexO(2−x/2)−yCy and of composites based thereon containing an excessive carbon content. It was shown that the oxide solid solutions exhibit photocatalytic activity in the hydroquinone photooxidation reaction during irradiation in the ultraviolet spectrum. A correlation was established between the hydroquinone oxidation rate and the concentration of the substituting ions ‘M’ in the catalyst. In the framework of the theory of ion-covalent binary solid solutions, a correlation was found between the energy of the photocatalytic reaction and the estimated mixing enthalpy of binary solid solutions formation.
About the Authors
E. V. PolyakovRussian Federation
str. Pervomajskaya, 91, 620990, Ekaterinburg
tel.: +7 343 3744814, fax.: +7 343 3744495
V. N. Krasilnikov
Russian Federation
str. Pervomajskaya, 91, 620990,Ekaterinburg
O. I. Gyrdasova
Russian Federation
str. Pervomajskaya, 91, 620990,Ekaterinburg
L. Yu. Buldakova
Russian Federation
str. Pervomajskaya, 91, 620990,Ekaterinburg
M. Yu. Yanchenko
Russian Federation
str. Pervomajskaya, 91, 620990,Ekaterinburg
References
1. Carp O., Huisman C.L., Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32 (1–2), P. 33–177 (2004).
2. Kubo W., Tatsuma T. Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity. J. Mater. Chem., 15 (30), P. 3104–3108 (2005).
3. Banerjee S., Gopal J., et al. Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Current Sci., 90, P. 1378 (2006).
4. Egerton T., Kessel L., Tooley I.R., Wang L. Photogreying of TiO2 nanoparticles. J. Nanoparticle Res., 9 (2), P. 251–260 (2007).
5. Pavasupree S., Jaturong J., Yoshikawa S. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders. Mater. Res. Bull., 43, P. 149–157 (2008).
6. Balcerski W., Ryu S.Y., Hoffmann M.R. Gas-Phase Photodegradation of Decane and Methanol on TiO2: Dynamic Surface Chemistry Characterized by Diffuse Reflectance FTIR. Intern. J. Photoenergy, Art. ID 964721 (2008).
7. Kitano M., Tsujimaru K., Anpo M. Hydrogen Production Using Highly Active Titanium Oxide-based Photocatalysts. Top. Catal., 49 (1–2), P. 4–17 (2008).
8. Xia M., Zhang Q., et al. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature. Nanotechnology, 20 (5), P. 055605 (2009).
9. Kumar S.G., Devi L.G. Review on modified TiO2 photocatalyst under UV/visible light: Selected Results and Related Mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A, 115, P. 13211–13241 (2011).
10. Xiao Yutang, Xu ShuangShuang, Li ZhiHua, et al. Progress of applied research on TiO2 photocatalysismembrane separation coupling technology in water and wastewater treatments. Chinese Sci. Bull., 55 (14), P. 1345–1353 (2010).
11. Tueng S., Kanaev A., Chhor K. New homogeneously doped Fe(III)-TiO2 photocatalyst for gaseous pollutant degradation. Appl. Catal. A: General, 399, P. 191–197 (2011).
12. Wang D., Yu R., Chen Y., et al. Photocatalysis property of needle-like TiO2 prepared from a novel titanium glycolate precursor. Solid State Ionics, 172, P. 101–104 (2004).
13. Jiang X., Wang Y., Herricks T., Xia Y. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem., 14 (4), P. 695–703 (2004).
14. Krasilnikov V.N., Shtin .P., et al. Vanadyl and titanium glycolates as precursors for the preparation of oxide materials in the form of elongated microparticles and nanoparticles. Nanotechnologies in Russia, 3 (3), P. 106–111 (2008).
15. Krasilnikov V.N., Shtin .P., et al. Synthesis and properties of titanium glycolate Ti(OCH2CH2O)2. Russian Journal of Inorganic Chemistry, 53 (7), P. 1065–1069 (2008).
16. Zaleska A. Doped-TiO2: A Review. Recent Patents Eng., 2 (3), P. 157–164 (2008).
17. Nishijima K., Kamai T., et al. Photocatalytic Hydrogen or Oxygen Evolution from Water over S- or N-Doped TiO2 under Visible Light. Intern. J. Photoenergy, Art. ID 173943 (2008).
18. Su Y., Han S., et al. Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped TiO2 nanotubes. Mater. Chem. Phys., 110 (2–3), P. 239–246 (2008).
19. Carriazo J.G., Moreno M., Molina R.A., Moreno S. Incorporation of titanium and titanium-iron species inside a smectite-type mineral for photocatalysis. Appl. Clay Sci., 50 (3), P. 401–408 (2010).
20. Sun H., Wang S., et al. Halogen element modified titanium dioxide for visible light photocatalysis. Chem. Eng. J., 162, P. 437–447 (2010).
21. Yang J., Chen D.-X., et al. Visible-light-driven photocatalytic degradation of microcystin-LR by Bi-doped TiO2. Res. Chem. Intermed., 37 (1), P. 47–60 (2011).
22. Krasilnikov V.N., Shtin .P., et al. Synthesis and photocatalytic activity of Ti1−xVxO2−yCy whiskers in hydroquinone oxidation in aqueous solutions. Russian Journal of Inorganic Chemistry, 58 (8), P. 1184–1194 (2010).
23. Zainullina V.., Zhukov V.P., et al. Electronic structure and the optical and photocatalytic properties of anatase doped with vanadium and carbon. Physics of Solid State, 52, P. 271–280 (2010).
24. Krasilnikov V.N., Shtin .P., et al. Glycolate Ti1−xLnx(OCH2CH2O)2−x/2 as an efficient precursor for synthesis of titanium dioxide doped with lanthanides Ti1−xLnxO2−x/2. Doklady Chemistry, 437 (2), P. 112–115 (2011).
25. Baklanova I. V., Krasil’nikov V. N., Perelyaeva L. A., Gyrdasova O. I. Stability of the anatase phase in nanodimensional titanium dioxide doped with europium(III), samarium(III), and iron(III). Theoretical and Experimental Chemistry, 47 (4), P. 215–218 (2011).
26. Sathishkumar P., Anandan S., et al. Synthesis of Fe3+ doped TiO2 photocatalysts for the visible assisted degradation of an azo dye. Colloids and Surfaces. A: Physicochem. Eng. Aspects, 375, P. 231–236.
27. Matsuura H., Miyazawa T. Infrared Spectra and Molecular Vibrations of Ethylene Glycol and Deuterated Derivatives. Bull. Chem. Soc. Japan, 40 (1), P. 85–94 (1967).
28. Ohtani B. Photocatalysis A to Z-What we know and what we do not know in a scientific sense. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 11, P. 157–178 (2010).
29. Urusov V. S. Crystal Chemical and Energetic Characterization of Solid Solution. Thermodynamic Data Advances in Physical Geochemistry, 10, P. 162–193 (1992).
30. Urusov V.S. Comparison of Semi-Empirical and Ab Initio Calculations of the Mixing Properties of MO–M’O Solid Solutions. Journal of Solid State Chemistry, 153 (2), P. 357–364 (2000).
31. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 32, P. 751–767 (1976).
Review
For citations:
Polyakov E.V., Krasilnikov V.N., Gyrdasova O.I., Buldakova L.Yu., Yanchenko M.Yu. Synthesis and photocatalytic activity of quasi-one-dimensional (1-D) solid solutions Ti1-xMxO2-2x/2 (M(III)= Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III) and Sm(III), 0≤x≤0.1). Nanosystems: Physics, Chemistry, Mathematics. 2014;5(4):553-563.