Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of high pressures and high temperatures on structural and magnetic characteristics of nanostructured solid solutions Zn1-xFexO

Abstract

Nanostructured solid solutions of the composition Zn1xFexO (0 6 x 6 0.075) with tubular aggregate morphology, synthesized by the precursor method, were subjected to thermobaric treatment at P = 5 GPa and T = 600–700C. Using the samples with x = 0.05 as an example, it was shown that the application of pressure leads to morphology variation, reduction of structural parameters and to an increase in ferromagnetism.

About the Authors

T. V. Dyachkova
Federal State government-financed research institution Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



V. N. Krasil’nikov
Federal State government-financed research institution Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



O. I. Gyrdasova
Federal State government-financed research institution Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



E. V. Shalaeva
Federal State government-financed research institution Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



A. P. Tyutyunnik
Federal State government-financed research institution Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



V. V. Marchenkov
Federal State government-financed research institution Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



Yu. G. Zaynulin
Federal State government-financed research institution Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences,
Russian Federation

Ekaterinburg



H. W. Weber
Atominstitut, Vienna University of Technology
Austria

Vienna



References

1. Cheng H., Cheng J., Zhang Y., Wang Q.-M. Large-scale fabrication of ZnO micro-and nano- structures by microwave thermal evaporation deposition. Journal of Crystal Growth, 299(1), P. 34–40 (2007).

2. Singh R. Unexpected magnetism in nanomaterials. Journal of Magnetism and MagneticMaterials, 346, P. 58–73 (2013).

3. Yilmaz C., Unal U. Synthesis and Characterization of Hierarchical ZnO Structures by a Single-Step Electrodeposition under Hydrothermal Conditions. Electrochimica Acta, 123, P. 405–411 (2014).

4. Murugadoss G. Synthesis and Characterization of Transition Metals Doped ZnO Nanorods. J. Mater. Sci. Technol., 28(7), P. 587–593 (2012).

5. Ahmed F., Kumar S., Arshi N., et al. Direct relationship between lattice volume, band gap, morphology and magnetization of transition metals (Cr, Mn and Fe)-doped ZnO nanostructures. Acta Materialia, 60, P. 5190–5196 (2012).

6. Wibowo J.A., Djaja N.F., Saleh R. Cu- and Ni-Doping Effect on Structure and Magnetic Properties of Fe-Doped ZnO Nanoparticles. Advances Mater. Phys. Chem., 3, P. 48–57 (2013).

7. Karmakar D., Dasgupta I., Das G.P., Kawazoe Y. High Temperature Ferromagnetism in Fe-Doped ZnO: a Density Functional Investigation. Materials Transactions, 48(8), P. 2119–2122 (2007).

8. Samariya A., Sighal R.K., Kumar S., et al. Defect-induced reversible ferromagnetism in Fe-doped ZnO semiconductor: An electronic structure and magnetization study. Mater. Chem. Phys., 123(2-3), P. 678– 684 (2010).

9. Limaye M.V., Sngh S.B., Das R., et al. Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: Microwave-assisted synthesis. J. Solid State Chem., 184, P. 391–400 (2011).

10. Panigrahy B., ASlam M., Bahadur D. Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology, 23, P. 11601 (2012).

11. Lokesh R.N., Balakrishnan L., Jeganathan K., et al. Role of surface functionalization in ZnO:Fe nanostructures. Mater. Sci. Eng. B, 183, P. 39–46 (2014).

12. Colak H., Turkoglu O. Synthesis, Crystal Structural and Electrical Conductivity Properties of Fe-Doped Zinc Oxide Powders at High Temperatures. J. Mater. Sci Technol, 28, P. 268–274 (2012).

13. Wang F., Huang W.-W., Li S.-Y., et al. The magnetic properties of FexZn1−xO synthesized via the solid-state reaction route: Experiment and theory. Journal of Magnetism and Magnetic Materials, 340, P. 5–9 (2013).

14. Denisha M.L., Jayanna H.S., Ashoka S., Chndrappa G.T. Temperature dependent electrical conductivity of Fe doped ZnO nanoparticles prepared by solution combustion method. J. Alloys Compd, 485, P. 538– 541 (2009).

15. Dhiman P., Sharma S.K., Knobel M., Ritu R., Singh M. Magnetic Properties of Fe doped ZnO Nanosystems Synthesized by Solution Combustion Method Res. J. Resent Sci, 1(8), P. 48–52 (2012).

16. Behera A.K, Mohapatra N., Chatterjee S. Effect of Fe Doping on Optical and Magnetic Properties of ZnO Nanorods. J. Nanosci. Nanotechnol, 14(5), P. 3667–3672 (2014).

17. Wu G.S., Xie T., Yuan X.Y., et al. Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process. Solid State Communications, 134, P. 485–489 (2005).

18. Liu H., Yang J., Zhang Y., Yang L., Wei M., Ding X. Structure and magnetic properties of Fe-doped ZnO prepared by the sol–gel method. J. Phys.: Condens. Mater., 21, P. 145803 (2009).

19. Zhang H.-W., Wei Z.-R., Li Z.-Q., Dong G.-Y. Room-temperature ferromagnetism in Fe-doped, Fe- and Cu-codoped ZnO diluted magnetic semiconductor. Materials Letters, 61(17), P. 3605–3607 (2007).

20. Wang Y.Q., Yuan S.L., Liu L., et al. Ferromagnetism in Fe-doped ZnO bulk samples. J. Magnet. Magnetic Mater., 320(8), P. 1423–1426 (2008).

21. Wang Y.Q., Cheng X.R., Su L., et al. The structure and magnetic properties of Zn0.99Fe0.01O synthesized under high pressure. Solid State Commun., 152(7), P. 581–584 (2012).

22. Krasil’nikov V.N., Gyrdasova O.I., Buldakova L.Y., et al. Synthesis and Photocatalytic Properties of Highly Dispersed Zinc Oxide Doped with Iron. Doklady Chemistry, 437(2), P. 496–498 (2011).

23. Zhukov V.P., Krasil’nikov V.N., Perelyaeva L.A., et al. Electronic Band Structure and Optical Absorption of Nanotubular Zinc Oxide Doped with Iron, Cobalt, or Copper. Phys. Solid State, 55(12), P. 2331–2339 (2013).

24. Krasil’nikov V.N., Gyrdasova O.I., Buldakova L.Y., Yanchenko M.Y. Synthesis and Photocatalytic Properties of Low-Dimensional Cobalt-Doped Zinc Oxide with Different Crystal Shapes. Russ. J. Inorg. Chem., 56(2), P. 145–151 (2011).

25. Gyrdasova O.I., Krasil’nikov V.N.., Shalaeva E.V., et al. Synthesis and Structure of Quasi-One-Dimensional Zinc Oxide Doped with Manganese. Russ. J. Inorg. Chem., 57(1), P. 72–78 (2012).

26. Gyrdasova O.I., Krasil’nikov V.N., Melkozerova M.A., et al. Synthesis, Microstructure, and Native Defects of Photoactive Zn1−xCuxO Solid Solutions (06 x 60.1) with Tubular Aggregates. Doklady Chemistry, 447(1), P. 258–261 (2011).

27. Gyrdasova O.I., Melkozerova M.A., Krasil’nikov V.N., et al. Synthesis and Native Defectivity of Zn1−xVxO (06 x 60.03) Photocatalysts. Bull. Russ. Acad. Sci. Phys., 77(3), P. 305–308 (2013).

28. Melkozerova M.A., Krasil’nikov V.N., Gyrdasova O.I., et al. Effect of Doping with 3d Elements (Co, Ni, Cu) on the Intrinsic Defect Structure and Photocatalytic Properties of Nanostructured ZnO with Tubular Morphology of Aggregates. Phys. Solid State, 55(12), P. 2340–2345 (2013).

29. Gyrdasova O.I., Krasil’nikov V.N., Shalaeva E.V., et al. Optical and Photocatalytic Properties of Quasi-One-Dimensional ZnO Activated by Carbon. Mendeleev Commun., 24, P. 143–144 (2014).


Review

For citations:


Dyachkova T.V., Krasil’nikov V.N., Gyrdasova O.I., Shalaeva E.V., Tyutyunnik A.P., Marchenkov V.V., Zaynulin Yu.G., Weber H.W. Effect of high pressures and high temperatures on structural and magnetic characteristics of nanostructured solid solutions Zn1-xFexO. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(4):564-573.

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)