A facile route of coupling of ZnO nanorods by CdS nanoparticles using chemical bath deposition
Abstract
Cadmium sulfide nanoparticles (NPs) coupled to zinc oxide nanorods (NRs) were synthesized in a two step deposition process at relatively low temperatures. The ZnO NRs were grown using solvothermal method, followed by the deposition of CdS NPs at 50 ◦C using in-situ and ex-situ synthesis from aqueous solutions. The samples were characterized by X-ray diffraction, scanning electron microscopy, and optical absorption. When the ZnO NRs are coated by the CdS NPs, the optical absorption is enhanced and band edge is shifted towards visible region as compared with ZnO NRs. Photocatalytic activity of the synthesized ZnO NRs / CdS NPs composites in the photooxidation of hydroquinone C6H4(OH)2 in aqueous solution is closely connected with the coupling route.
Keywords
About the Authors
N. S. KozhevnikovaRussian Federation
Ekaterinburg
O. I. Gyrdasova
Russian Federation
Ekaterinburg
A. S. Vorokh
Russian Federation
Ekaterinburg
I. V. Baklanova
Russian Federation
Ekaterinburg
L. Yu. Buldakova
Russian Federation
Ekaterinburg
References
1. Hu L., Yan J., et al. An optimized ultraviolet -A light photodetector with wide range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater., 24 (17), P. 2305–2309 (2012).
2. Panda S.K., Chakrabarti S., et al. Optical and microstructural characterization of CdS-ZnO nanocomposite thin films prepared by sol-gel technique. J. Phys. D: Appl. Phys., 37 (4), P. 628–633 (2004).
3. Fang X., Bando Y., et al. Inorganic semiconductor nanostructures and their field-emission applications. J. Mater. Chem., 18 (5), P. 509–522 (2008).
4. Hoffmann M. R., Martin S. T., Choi W., Bahnmann D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 95 (1), P. 69–96 (1995).
5. Fang X., Wu L., Hu L. ZnS nanostructure arrays: a developing material star. Adv. Mater., 23 (5), P. 585–598 (2011).
6. Liu H., Hu L., et al. Cathodoluminescence modulation of ZnS nanostructures by morphology, doping and temperature. Adv. Funct. Mater., 23 (29), P. 3701–3709 (2013).
7. Jiang C.Y., Sun X.W., et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett., 90 (26), P. 263501 (2007).
8. Pan Z.W., Dai Z.R., Wang Z.L. Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc., 124 (29), P. 8673–8680 (2002).
9. Pan Z.W., Dai Z.R., Wang Z.L. Nanobelts of semiconducting oxides. Science, 291 (5510), P. 1947–1949 (2001).
10. Aroutiounian V. M., Arakelyan V. M., Shahnazaryan G. E. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy, 78 (5), P. 581–592 (2005).
11. Jana T.K., Pal A., Chatterjee K. Self-assembled flower like CdS-ZnO nanocomposite and its photocatalytic activity. J. Alloys and Compounds, 583, P. 510–515 (2014).
12. Khanchandani S., Kundu S., Patra A., Ganguli A.K. Band gap tuning of ZnO/In2S3 core/shell nanorod arrays for enhanced visible-light-driven photocatalysis. J. Phys. Chem. C, 117 (11), P. 5558–5567 (2013).
13. Balachandran S., Swaminathan M. Facile fabrication of heterostructured Bi2O3–ZnO photocatalyst and its enhanced photocatalytic activity. J. Phys. Chem. C, 116 (50), P. 26306–26312 (2012).
14. Khanchandani S., Kundu S., Patra A., Ganguli A.K. Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods. J. Phys. Chem. C, 116 (44), P. 23653–23662 (2012).
15. Wang L., Wei H., et al. Synthesis, optical properties and photocatalytic activity of one-dimensional CdS@ZnS core-shell nanocomposites. Nanoscale Res. Lett., 4 (6), P. 558–564 (2009).
16. Barpuzary D., Khan Z., et al. Hierarchically grown urchinlike CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible light-driven photocatalytic hydrogen generation. J. Phys. Chem. C, 116 (1), P. 150–156 (2012).
17. Fujii H., Ohtaki M., Eguchi K., Arai H. Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix. J. Mol. Catal. A: Chem., 129 (1), P. 61–68 (1998).
18. Kamat P.V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 93 (1), P. 267– 300 (1993).
19. Gopidas K.R., Bohorquez M., Kamat P.V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J. Phys. Chem., 94 (16), P. 6435–6440 (1990).
20. Evans J.E., Springer K.W., Zhang J.Z. Femtosecond studies of interparticle electron transfer in a coupled CdS-TiO2 colloidal system. J. Chem. Phys., 101 (7), P. 6222–6225 (1994).
21. Sudhagar P., Chandramohan S., et al. Fabrication and charge-transfer characteristics of CdS QDs sensitized vertically grown flower-like ZnO solar cells with CdSe cosensitizers. Phys. Stat. Sol. A, 208 (2), P. 474–479 (2011).
22. Jun H.K., Careem M.A., Arof A.K. Quantum dot-sensitized solar cells — perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews, 22, P. 148–167 (2013).
23. Qi X., She G., et al. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties. Chem. Commun., 48 (2), P. 242–244 (2012).
24. Kundu P., Deshpande P.A., Madras G., Ravishankar N. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation. J. Mater. Chem., 21 (12), P. 4209–4216 (2011).
25. Tak Y., Hong S.J., Lee J.S., Yong K. Solution-based synthesis of a CdS nanoparticle/ZnO nanowire heterostructure array. Cryst. Growth Des., 9 (6), P. 2627–2632 (2009).
26. Tak Y., Kim H., Lee D., Yong K. Type-II CdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. Chem. Commun., 38, P. 4585–4587 (2008).
27. Hodes G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C, 112 (46), P. 17778–17787 (2008).
28. Niitsoo O., Sarkar S.K., et al. Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells. J. Photochem. Photobiol. A, 181 (2–3), P. 306–313 (2006).
29. Nicolau Y.F., Dupuy M., Brunel M. ZnS, CdS and Zn1−xCdxS thin films deposited by the successive ionic layer adsorption and reaction process. J. Electrochem. Soc., 137 (9), P. 2915–2924 (1990).
30. Robel I., Subramanian V., Kuno M., Kamat P.V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc., 128 (7), P. 2385–2393 (2006).
31. Gyrdasova O.I., Krasil’nikov V.N., et al. Synthesis, microstructure, and photocatalytic characteristics of quasione-dimensional zinc oxide doped with d elements. Doklady Chemistry, 434 (1), P. 211–213 (2010).
32. Melkozerova M.A., Krasil’nikov V.N., et al. Effect of doping with 3d elements (Co, Ni, Cu) on the intrinsic defect structure and photocatalytic properties of nanostructured ZnO with tubular morphology of aggregates. Physics of the Solid State, 55 (12), P. 2459–2465 (2013).
33. Shalaeva E.V., Gyrdasova O.I., et al. Structural, optical, and photocatalytic properties of quasi-onedimensional nanocrystalline ZnO, ZnOC:nC composites, and C-doped ZnO. In: Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications. Springer Proceedings in Physics, 156, (26), DOI 10.1007/978-3-319-06611-026 (2014) (in press).
34. Kozhevnikova N.S., Vorokh A.S., Rempel A.A. Preparation of stable colloidal solution of cadmium sulfide CdS using ethylenediaminetetraacetic acid. Russ. J. General Chem., 80 (3), P. 391–394 (2010).
35. Rempel A.A., Kozhevnikova N.S., Rempel S.V. Structure of cadmium sulfide nanoparticle micelle in aqueous solutions. Russ. Chem. Bulletin, 62 (2), P. 398–402 (2013).
36. Kitaev G.A., Morkrushin S.G., Uritskarya A.A. Chemical bath deposition conditions of CdS thin films on solid surface. Russ. J. Phys. Chem., 39 (8), P. 2065–2066 (1965).
37. Ortega-Borges R., Lincot D. Mechanism of chemical bath deposition od cadmium sulfide thin films in ammoni-thiourea system. J. Electrochem. Soc., 140 (12), P. 3464–3473 (1993).
38. Chapman A.J., Lane D.W., Rogers K.D., ¨Ozsan M.E. Microstructural changes of CdTe during the annealing process. Thin Solid Films, 403–404, P. 522–525 (2002).
39. Yan Y., Albin D., Al-Jassim M.M. Do grain boundaries assist S diffusion in polycrystalline CdS/CdTe heterojunctions? Appl. Phys. Lett., 78 (2), P. 171–173 (2001).
40. O’Brien P., Saeed T.J. Deposition and characterization of cadmium sulfide thin films by chemical bath deposition. J. Cryst. Growth, 158 (4) P. 497–504 (1996).
41. Thavasi V., Renugopalakrishnan V., Jose R., Ramakrishna S. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mater. Sci. Eng. R, 63 (3), P. 81–99 (2008).
42. Vorokh A.S., Rempel A.A. Direct-space visualization of the short and ‘average’ long-range orders in the noncrystalline structure of a single cadmium sulfide nanoparticle. JETF Letters, 91 (2), P. 100–104 (2010).
43. Ukhanov Yu.I. Optical Properties of Semiconductors. Nauka, Moscow, 1977, 366 p. (in Russian).
44. Vorokh A.S., Rempel A.A. Atomic structure of cadmium sulfide nanoparticles. Phys. Solid State, 49 (1), P. 148–153 (2007).
Review
For citations:
Kozhevnikova N.S., Gyrdasova O.I., Vorokh A.S., Baklanova I.V., Buldakova L.Yu. A facile route of coupling of ZnO nanorods by CdS nanoparticles using chemical bath deposition. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(4):579-589.