Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Tunneling in multidimensional wells

https://doi.org/10.17586/22208054201561113121

Abstract

A full asymptotic series for low eigenvalues and eigenfunctions of a stationary Schr¨odinger operator with a nondegenerate well was constructed in [29]. This allowed us to describe the tunneling effect for a potential with two or more identical wells with sufficient accuracy. The procedure is described in the following discussion. Some formulae are obtained and corresponding problems are discussed.

About the Author

T. F. Pankratova
ITMO University
Russian Federation

St. Petersburg



References

1. M.V. Fedoryuk. Asymptotics of the point spectrum of the operator W00 + 2p(x)W. Mat. Sb., 68 (110), P. 81–110 (1965). (In Russian)

2. S.Yu. Slavyanov. Asymptotics of singular SturmLiuville problems with respect to a large parameter in the case of close transition points. Differential Equations, 5, P. 313–325 (1969).

3. A.G. Alenitsyn. The spectrum splitting generated by a potential barrier in problems with a symmetrical potential. Differential Equations, 18, P. 1971–1975 (1982).

4. B. Simon. Semiclassical analysis of low lying eigenvalues, I. Nondegenerate minima: Asymptotic Expansions. Ann. Inst. Henry Poincare, 38, P. 295–307 (1983).

5. B. Simon. Semiclassical analysis of low lying eigenvalues, II. Tunneling. Ann. Math., 120, P. 89–118 (1984).

6. V.P. Maslov. The complex WKBmethod in nonlinear equations. Nauka, Moscow, 1981. (Russian)

7. G. JonaLasinio, F. Martinelli, E. Scoppola. New approach to the semiclassical limit of quantum mechanics, Comm. Math. Phys., 80, P. 223–254 (1981).

8. E.M. Harrel. Double wells. Comm. Math. Phys., 75, P. 239–261 (1980).

9. T.F. Pankratova. Quasimodes and splitting of eigenvalues. Soviet Math. Dokl., 29, P. 597–601 (1984).

10. E. Delabaere, H. Dillinger. Contribution a la resurgence quantique. These de doctorat de math., L’Universite de Nice SophiaAntipolis (1991).

11. B. Helffer, J. Sjostrand. Multiple wells in the semiclassical limit I. Comm. in partial differential equations, 9, P. 337–408 (1984).

12. B. Helffer, J. Sjostrand. Puits multiples en limite semiclassique II. Interaction moleculaire. Symetries. Perturbation. Ann. Inst. Henry Poincare, 42, P. 127–212 (1985).

13. B. Helffer, J. Sjostrand. Multiple wells in the semiclassical limit III. Interaction through nonresonant wells. Math. Nachr., 124, P. 263–313 (1985).

14. G. JonaLasinio, F. Martinelli, E. Scoppola. Multiple tunneling in ddimensions: a quantum particle in a hierarchical potential. Ann. Inst. Henry Poincare, 42, P. 73–108 (1985).

15. S.Yu. Slavyanov, N.A. Veshev. The quantization of lower states of an unhannonic oscillator with methods of the classical dynamics. Problemy Matfiziki, 13 (1991). (In Russian)

16. S. Graffi, T. Paul. The Schr¨odinger equation and canonical perturbation theory. Comm. Math. Phys., 108, P. 25–40 (1987).

17. J. Bellissard, M. Vittot. Heisenberg’s picture and noncommutative geometry of the semi classical limit in quantum mechanics. Ann. Inst. Henry Poincare, 52, P. 175–235 (1990).

18. S.Yu. Dobrokhotov, V.N. Kolokoltsov, V.P. Maslov. The splitting of the low lying energy levels of the Shr¨odinger operator and the asymptotics of the fundamental solution of the equation hut = (h2=2􀀀V (x))u with a symmetric potential. Teor. and Mat. Phys., 87, P. 323–375 (1991).

19. S.Yu. Dobrokhotov, V.N. Kolokoltsov, V.P. Maslov. Quantization of the Bellman Equation. Exponential asymptotics and Tunneling. Advances In Soviet Mathematics, 13, P. 1–46 (1992).

20. S.Yu. Dobrokhotov, V.N. Kolokoltsov. Splitting amplitudes of the lowest energy levels of the Schr¨odinger operator with double well potential. Teor. and Mat. Phys., 94, P. 346–434 (1993).

21. V.I. Arnol’d. Modes and quasimodes. Functional Anal. Appl., 6, P. 12–20 (1972).

22. V.I. Arnol’d. Mathematical methods in classical mechanics. Nauka, Moscow, 1989. (In Russian)

23. V.I. Arnol’d, V.V. Kozlov, A.I. Neishtadt. Mathematical aspects in classical and celestial mechanics. Dynamical systems3. SpringerVerlag Berlin Heidelberg, 2006.

24. J. Williamson. On the algebraic problem concerning the normal forms linear dynamical systems. Amer. J. Math., 58, P. 141–163 (1936).

25. J. Williamson. The exponential representation of canonical matrices. Amer. J. Math., 61, P. 897–911 (1939).

26. J. Sjostrand. Analytic wavefront sets and operators with multiple characteristics. Hokkaido Math. J., 12, P. 392–433 (1983).

27. Nguyen Hu’u Du’c, F. Pham. Germcs de configurations legendriennes stables et functions d’AiryWebcr gcneralisees. Annales de l’institut Fourier, 41, P. 905–936 (1991).

28. L.V. Kantorovich, G.P.Akilov. Funcional analysis, Perganion Press, 1982.

29. T.F. Pankratova. Semiclassical eigenstates at the bottom of a multidimencional well. Ann. Inst. Henri Poincar`e, 62 (4), P. 361–382 (1995).

30. T.F. Pankratova, N.V. Homchenko. Exponential splitting of eigenvalues. Trudy stud. centra prikl. matem. issled. NIU ITMO, 2, P. 105–110 (2012). (In Russian)

31. T.F. Pankratova. Ansats with Hermite polynomials for a multidimensional well. Mat. vopr. teor. raspr. voln, 24, P. 149–165 (1994). (In Russian)

32. Yu.A. Gromova, M.Yu. Mukhorina, T.F. Pankratova. Hunting for quantum points near the bottom of an unharmonical Schr¨odinger well. Carles Sim´o Fest, May 28th June 3rd, 2006. Book of Abstracts, P. 24–25 (2006).


Review

For citations:


Pankratova T.F. Tunneling in multidimensional wells. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):113-121. https://doi.org/10.17586/22208054201561113121

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)