On the Stokes flow computation algorithm based on woodbury formula
https://doi.org/10.17586/2220-8054-2015-6-1-140-145
Abstract
The Stokes approximation is used for the description of flow in nanostructures. An algorithm for Stokes ow computation in cases when there is great variation in the viscosity over a small spatial region is described. This method allows us to overcome computational dificulties of the nite-dierence method. The background of the approach is using the Woodbury formula - a discrete analog of the Krein resolvent formula. The particular example of a rectangular domain is considered in detail. The inversion of the discrete Stokes operator is made in analytic form for the case of constant viscosity.
About the Authors
A. I. PopovRussian Federation
Kronverkskiy 49, 197101, St. Petersburg
I. S. Lobanov
Russian Federation
Kronverkskiy 49, 197101, St. Petersburg
I. Yu. Popov
Russian Federation
Kronverkskiy 49, 197101, St. Petersburg
T. V. Gerya
Switzerland
5 Sonnegstrasse, CH-8092 Zurich
References
1. Li D. (Ed.) Encyclopedia of micro uidics and nano uidics. New York: Springer (2008).
2. Rivera J. L., Starr F. W. Rapid transport of water via carbon nanotube syringe. J. Phys. Chem. C., 114, P. 3737-{3742 (2010).
3. Chiviulikhin S.A., Gusarov V.V., Popov I.Yu. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Phys. Chem. Math., 3(1), P. 7-26 (2012).
4. Hanasaki I., Nakatani A. Fluidized piston model for molecular dynamics simulations of hydrodynamic ow. Modelling Simul. Mater. Sci. Eng., 14, P. 9|20 (2006).
5. Maslov V.P. Super uidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule. Theor. Math. Phys., 153, P. 1677-{1796 (2007).
6. Li T.-D., Gao J., Szoszkeiwicz R., Landman U., Riedo E. Structured and viscous water in subnanometer gaps. Phys. Rev. B., 75, P. 115415-1{115415-6 (2007).
7. Mashl R. J., Joseph S., Aluru N. R., Jakobsson E. Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes. Nano Letters, 3, P. 589|592 (2003).
8. Popov I.Yu. Statistical derivation of modfied hydrodynamic equations for nanotube ows. Phys. Scripta, 83, P. 045601/1-3 (2011).
9. Batischev V.A., Zaikin V.V., Horoshunova E.V. Heat transport in Marangoni layer with nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 4(3), P. 313{319 (2013).
10. Blinova I.V. Model of non-axisymmetric ow in nanotube. Nanosystems: Physics, Chemistry, Mathematics, 4(3), P. 320{323 (2013).
11. Kononova S. V. et. al. Polimer-inorganic nanocomposites based on aromatic polyamidoimides effective in the process of liquids separation. Russ. J. Gen. Chem., 80, P. 1136-{1142 (2010).
12. T. Gerya. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge (2009).
13. A. Ismail-Zadeh, P.Tackley. Computational Methods for Geodynamics. Cambridge University Press, Cambridge (2010).
14. T.Duretz, D. A. May, T. V. Gerya, P. J. Tackley, Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical study. Geochem. Geophys. Geosyst., 12 (2011), Q07004, doi:10.1029/2011GC003567.
15. Popov I.Y., Lobanov I.S., Popov A.I., Gerya T.V. Benchmark solutions for nanoows. Nanosystems: Physics, Chemistry, Mathematics, 5(3), P. 391{399 (2014).
16. Popov I.Y., Lobanov I.S., Popov A.I., Gerya T.V. Numerical approach to the Stokes problem with high contrasts in viscosity. Applied Mathematics and Computations, 235, P. 17{25 (2014). DOI 10.1016/j.amc.2014.02.084.
Review
For citations:
Popov A.I., Lobanov I.S., Popov I.Yu., Gerya T.V. On the Stokes flow computation algorithm based on woodbury formula. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):140-145. https://doi.org/10.17586/2220-8054-2015-6-1-140-145