Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Strong solutions and the initial data space for some non-uniformly parabolic equations

https://doi.org/10.17586/22208054201561146153

Abstract

This paper is devoted to strong solutions of the first and second initialboundary problems for nonuniformly parabolic equations. These equations are used in mechanics, glaciology, rheology, image processing as well as for nanosystem modeling. The initial data space for these problems was explicitly described as Orlicz—Sobolev spaces.

About the Author

M. A. Skryabin
ITMO University
Russian Federation

Saint Petersburg



References

1. Adams R. A. Sobolev Spaces. Boston: Academic Press (1975).

2. Ashyralyev A., Sobolevskii P. E. WellPosedness of Parabolic Difference Equations. Basel, Boston, Berlin: Birkh¨auser (1994).

3. Cai Y., Zhou Sh. Existence and uniqueness of weak solutions for a nonuniformly parabolic equation. J. Functional Analysis, 257, P. 30213042 (2009).

4. DiBenedetto E. Degenerate Parabolic Equations. Berlin: SpringerVerlag (1993).

5. Donaldson T. K., Trudinger N. S. Orlicz–Sobolev spaces and imbedding theorems. J. Functional Analysis, 8, P. 52–75 (1971).

6. Fuchs M., Mingione G. Full C1;regularity for free and contrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscripta Math., 102, P. 227250 (2000).

7. Krasnosel’skii M. A., Rutickii Ya. B. Convex Functions and Orlicz Spaces. Noordhoff, Groningen, The Netherlands (1961).

8. Lions J.L. Some Methods of Solution of Nonlinear BoundaryValue Problems. Moscow: Mir (1972).

9. Lions J.L., Magenes E. NonHomogeneous Boundary Value Problems and Applications. Berlin: Springer (1972).

10. Luxemburg W. Banach function spaces. PhD Thesis, Technische Hogeschool te Delft, The Netherlands (1955).

11. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: SpringerVerlag (1983).

12. Perona P., Malik J. Scalespace and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence, 12 (7), P. 629639 (1990).

13. Shamin R.V. Spaces of initial data for differential equations in a Hilbert space. Sb. Math., 194, P. 1411–1426 (2003).

14. Shin K., Kang S. Doubly nonlinear parabolic equations involving pLaplacian Operators via timediscretization method. Bull. Korean Math. Soc., 49 (6), P. 11791192 (2012).

15. Tribel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North Holland (1978).

16. Umantsev A. Thermal effects of phase transformations: A review. Physica D, 235, P. 114 (2007).

17. Wang L., Zhou Sh. Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis. J. Partial Differential Equations, 19 (2), P. 97112 (2006).

18. Zhang Ch., Zhou Sh. Entropy solutions for a nonuniformly parabolic equation. Manuscripta Math., 131 (34), P. 335354 (2010).


Review

For citations:


Skryabin M.A. Strong solutions and the initial data space for some non-uniformly parabolic equations. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):146-153. https://doi.org/10.17586/22208054201561146153

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)