Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Strong solutions and the initial data space for some non-uniformly parabolic equations

https://doi.org/10.17586/22208054201561146153

Аннотация

This paper is devoted to strong solutions of the first and second initialboundary problems for nonuniformly parabolic equations. These equations are used in mechanics, glaciology, rheology, image processing as well as for nanosystem modeling. The initial data space for these problems was explicitly described as Orlicz—Sobolev spaces.

Об авторе

M. Skryabin
ITMO University
Россия


Список литературы

1. Adams R. A. Sobolev Spaces. Boston: Academic Press (1975).

2. Ashyralyev A., Sobolevskii P. E. WellPosedness of Parabolic Difference Equations. Basel, Boston, Berlin: Birkh¨auser (1994).

3. Cai Y., Zhou Sh. Existence and uniqueness of weak solutions for a nonuniformly parabolic equation. J. Functional Analysis, 257, P. 30213042 (2009).

4. DiBenedetto E. Degenerate Parabolic Equations. Berlin: SpringerVerlag (1993).

5. Donaldson T. K., Trudinger N. S. Orlicz–Sobolev spaces and imbedding theorems. J. Functional Analysis, 8, P. 52–75 (1971).

6. Fuchs M., Mingione G. Full C1;regularity for free and contrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscripta Math., 102, P. 227250 (2000).

7. Krasnosel’skii M. A., Rutickii Ya. B. Convex Functions and Orlicz Spaces. Noordhoff, Groningen, The Netherlands (1961).

8. Lions J.L. Some Methods of Solution of Nonlinear BoundaryValue Problems. Moscow: Mir (1972).

9. Lions J.L., Magenes E. NonHomogeneous Boundary Value Problems and Applications. Berlin: Springer (1972).

10. Luxemburg W. Banach function spaces. PhD Thesis, Technische Hogeschool te Delft, The Netherlands (1955).

11. Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: SpringerVerlag (1983).

12. Perona P., Malik J. Scalespace and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence, 12 (7), P. 629639 (1990).

13. Shamin R.V. Spaces of initial data for differential equations in a Hilbert space. Sb. Math., 194, P. 1411–1426 (2003).

14. Shin K., Kang S. Doubly nonlinear parabolic equations involving pLaplacian Operators via timediscretization method. Bull. Korean Math. Soc., 49 (6), P. 11791192 (2012).

15. Tribel H. Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North Holland (1978).

16. Umantsev A. Thermal effects of phase transformations: A review. Physica D, 235, P. 114 (2007).

17. Wang L., Zhou Sh. Existence and uniqueness of weak solutions for a nonlinear parabolic equation related to image analysis. J. Partial Differential Equations, 19 (2), P. 97112 (2006).

18. Zhang Ch., Zhou Sh. Entropy solutions for a nonuniformly parabolic equation. Manuscripta Math., 131 (34), P. 335354 (2010).


Рецензия

Для цитирования:


  . Наносистемы: физика, химия, математика. 2015;6(1):146-153. https://doi.org/10.17586/22208054201561146153

For citation:


Skryabin M.A. Strong solutions and the initial data space for some non-uniformly parabolic equations. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(1):146-153. https://doi.org/10.17586/22208054201561146153

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)