Renormalization group in the infinite-dimensional turbulence: determination of the RG-functions without renormalization constants
https://doi.org/10.17586/2220-8054-2015-6-4-461-469
Abstract
We calculate renormalization-group functions in the developed turbulence model for infinite dimensional space d → ∞ using an operating method without renormalization constants. The renormalization fixed point and index ω, obtained within the considered three loop approximation, are in agreement with previous calculations. The results demonstrate the efficiency of the method and the possibility of its complete automation, which is crucially important in higher order perturbation theory computations.
About the Authors
L. Ts. AdzhemyanRussian Federation
Department of Theoretical Physics
Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504
T. L. Kim
Russian Federation
Department of Theoretical Physics
Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504
M. V. Kompaniets
Russian Federation
Department of Theoretical Physics
Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504
V. K. Sazonov
Russian Federation
Department of Theoretical Physics; Institute of Physics, Department of Theoretical Physics
Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504
Universit¨atsplatz 5, A-8010 Graz
References
1. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar. Phys. Rev. E, 1995, 52, 4924. M. Chertkov and G. Falkovich, Anomalous Scaling Exponents of a White-Advected Passive Scalar. Phys. Rev. Lett., 1996, 76, P. 2706.
2. J.-D. Fournier, U. Frisch, H. A. Rose. Infinite-dimensional turbulence. J. Phys. A, 11(1), 1978, P. 187– 198.
3. L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol’din, T. L. Kim and M. V. Kompaniets. Renormalization group in the infinite-dimensional turbulence: third-order results, Journal of Physics A: Mathematical and Theoretical, 2008, 41(49), P. 495002.
4. L.Ts. Adzhemyan, N.V. Antonov, Renormalization group in turbulence theory: Exactly solvable Heisenberg model. Theoretical and Mathematical Physics, 115, 1098, P. 562–574.
5. L.Ts. Adzhemyan, M.V. Kompaniets, S.V. Novikov, V.K. Sazonov. Representation of the β-function and anomalous dimensions by nonsingular integrals: Proof of the main relation, Theoretical and Mathematical Physics, 2013, 175, P. 717–726.
6. L.Ts. Adzhemyan, M.V. Kompaniets, Five-loop numerical evaluation of critical exponents of the phi4 theory. Journal of Physics: Conference Series, 2014, 523, P. 012049.
7. P.C. Martin, E.D. Siggia, H.A. Rose. Statistical Dynamics of Classical Systems. Phys.Rev., 1973, A8, P. 423.
8. A. N. Vasil’ev The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Routledge Chapman & Hall 2004); ISBN 978-0-415-31002-4
9. O. I. Zavialov, Renormalized Quantum Field Theory, (Dordrecht :Kluwer, 1990).
Review
For citations:
Adzhemyan L.Ts., Kim T.L., Kompaniets M.V., Sazonov V.K. Renormalization group in the infinite-dimensional turbulence: determination of the RG-functions without renormalization constants. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(4):461-469. https://doi.org/10.17586/2220-8054-2015-6-4-461-469