Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Renormalization group in the infinite-dimensional turbulence: determination of the RG-functions without renormalization constants

https://doi.org/10.17586/2220-8054-2015-6-4-461-469

Аннотация

We calculate renormalization-group functions in the developed turbulence model for infinite dimensional space d → ∞ using an operating method without renormalization constants. The renormalization fixed point and index ω, obtained within the considered three loop approximation, are in agreement with previous calculations. The results demonstrate the efficiency of the method and the possibility of its complete automation, which is crucially important in higher order perturbation theory computations.

Ключевые слова


Об авторах

L. Adzhemyan
St. Petersburg State University
Россия

Department of Theoretical Physics

Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504



T. Kim
St. Petersburg State University
Россия

Department of Theoretical Physics

Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504



M. Kompaniets
St. Petersburg State University
Россия

Department of Theoretical Physics

Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504



V. Sazonov
St. Petersburg State University; University of Graz
Россия

Department of Theoretical Physics; Institute of Physics, Department of Theoretical Physics

Uljanovskaja 1, St. Petersburg, Petrodvorez, 198504

Universit¨atsplatz 5, A-8010 Graz



Список литературы

1. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar. Phys. Rev. E, 1995, 52, 4924. M. Chertkov and G. Falkovich, Anomalous Scaling Exponents of a White-Advected Passive Scalar. Phys. Rev. Lett., 1996, 76, P. 2706.

2. J.-D. Fournier, U. Frisch, H. A. Rose. Infinite-dimensional turbulence. J. Phys. A, 11(1), 1978, P. 187– 198.

3. L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol’din, T. L. Kim and M. V. Kompaniets. Renormalization group in the infinite-dimensional turbulence: third-order results, Journal of Physics A: Mathematical and Theoretical, 2008, 41(49), P. 495002.

4. L.Ts. Adzhemyan, N.V. Antonov, Renormalization group in turbulence theory: Exactly solvable Heisenberg model. Theoretical and Mathematical Physics, 115, 1098, P. 562–574.

5. L.Ts. Adzhemyan, M.V. Kompaniets, S.V. Novikov, V.K. Sazonov. Representation of the β-function and anomalous dimensions by nonsingular integrals: Proof of the main relation, Theoretical and Mathematical Physics, 2013, 175, P. 717–726.

6. L.Ts. Adzhemyan, M.V. Kompaniets, Five-loop numerical evaluation of critical exponents of the phi4 theory. Journal of Physics: Conference Series, 2014, 523, P. 012049.

7. P.C. Martin, E.D. Siggia, H.A. Rose. Statistical Dynamics of Classical Systems. Phys.Rev., 1973, A8, P. 423.

8. A. N. Vasil’ev The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Routledge Chapman & Hall 2004); ISBN 978-0-415-31002-4

9. O. I. Zavialov, Renormalized Quantum Field Theory, (Dordrecht :Kluwer, 1990).


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2015;6(4):461-469. https://doi.org/10.17586/2220-8054-2015-6-4-461-469

For citation:


Adzhemyan L.Ts., Kim T.L., Kompaniets M.V., Sazonov V.K. Renormalization group in the infinite-dimensional turbulence: determination of the RG-functions without renormalization constants. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(4):461-469. https://doi.org/10.17586/2220-8054-2015-6-4-461-469

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)