Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Exact classical stochastic representations of the many-body quantum dynamics

https://doi.org/10.17586/2220-8054-2015-6-4-501-512

Abstract

In this work we investigate the exact classical stochastic representations of many-body quantum dynamics. We focus on the representations in which the quantum states and the observables are linearly mapped onto classical quasiprobability distributions and functions in a certain (abstract) phase space. We demonstrate that when such representations have regular mathematical properties, they are reduced to the expansions of the density operator over a certain overcomplete operator basis. Our conclusions are supported by the fact that all the stochastic representations currently known in the literature (quantum mechanics in generalized phase space and, as it recently has been shown by us, the stochastic wave-function methods) have the mathematical structure of the above-mentioned type. We illustrate our considerations by presenting the recently derived operator mappings for the stochastic wave-function method.

About the Authors

E. A. Polyakov
Saint Petersburg State University
Russian Federation

Dept. of molecular biophysics and polymer physics, Faculty of Physics

198504, Saint Petersburg



P. N. Vorontsov-Velyaminov
Saint Petersburg State University
Russian Federation

Dept. of molecular biophysics and polymer physics, Faculty of Physics

198504, Saint Petersburg



References

1. Aksenova E. V., Kuz’min V. L., Romanov V. P. Coherent backscattering of light in nematic liquid crystals. J. Exp. Theor. Phys., 2009, 108, P. 516.

2. Aksenova E. V., Kokorin D. I., Romanov V. P. Simulation of coherent backscattering of light in nematic liquid crystals. J. Exp. Theor. Phys., 2012, 115, P. 337.

3. Aksenova E. V., Kokorin D. I., Romanov V. P. Simulation of radiation transfer and coherent backscattering in nematic liquid crystals. Phys. Rev. E., 2014, 89, P. 052506.

4. Drummond P. D., Gardiner C. W. Generalized p-representations in quantum optics. J. Phys. A: Math. Gen., 1980, 13, P. 2353.

5. Deuar P., Drummond P. D. First-principles quantum dynamics in interacting bose gases: I. the positive p representation. J. Phys. A: Math. Gen., 2006, 39, P. 1163.

6. Savage C. M., Schwenn P. E., Kheruntsyan K. V. First-principles quantum simulation of dissociation of molecular condensates: Atom correlations in momentum space. Phys. Rev. A., 2006, 74, P. 033620.

7. Deuar P., Drummond P. D. Correlations in a bec collision: First-principles quantum dynamics with 150 000 atoms. Phys. Rev. Lett., 2007, 98, P. 120402.

8. Juillet O., Gulminelli F. Exact pairing correlations for one-dimensionally trapped fermions with stochastic mean-field wave functions. Phys. Rev. Lett., 2004, 92, P. 160401.

9. Biele R., D’Agosta R. A stochastic approach to open quantum systems. J. Phys.: Condens. Matter., 2012, 24, P. 273201.

10. Lee M. D., Ruostekoski J. Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction. Phys. Rev. A., 2014, 90, P. 023628.

11. Gardiner C. W., Zoller P. Quantum Noise: a Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics. Berlin, Germany, Springer, 2004. ISBN: 3540223010, 9783540223016.

12. Carusotto I., Castin Y. An exact reformulation of the bose-hubbard model in terms of a stochastic gutzwiller ansatz. New. J. Phys., 2003, 5, P. 91.

13. Wilkie J. Variational principle for stochastic wave and density equations. Phys. Rev. E., 2003, 67, P. 017102.

14. Tessieri L., Wilkie J., etinba M. Exact norm-preserving stochastic time-dependent hartree-fock. J. Phys. A: Math. Gen., 2005, 38, P. 943.

15. Montina A., Castin Y. Exact bcs stochastic schemes for a time-dependent many-body fermionic system. Phys. Rev. A., 73, P. 013618.

16. Wilkie J., Wong Y. M., Ng R. Survey of exact n-body decompositions of stochastic scalar-jastrow-hartree form. Chem. Phys., 2010, 369, P. 43.

17. Lacroix D. Stochastic schroedinger equation from optimal observable evolution. Ann. Phys., 2007, 322, P. 2055.

18. Lacroix D. Optimizing stochastic trajectories in exact quantum-jump approaches of interacting systems. Phys. Rev. A., 2005, 72, P. 013805.

19. Breuer H.-P. Exact quantum jump approach to open systems in bosonic and spin baths. Phys. Rev. A., 2004, 69, P. 022115.

20. Lacroix D., Ayik S. Stochastic quantum dynamics beyond mean field. Eur. Phys. J. A., 2014, 50, P. 95.

21. Polyakov E. A., Vorontsov-Velyaminov P. N. Quasiprobability distributions in stochastic wave-function methods. Phys. Rev. A., 2015, 91, P. 042107.

22. Carusotto I., Castin Y., Dalibard J. N-boson time-dependent problem: A reformulation with stochastic wave functions. Phys. Rev. A., 2001, 63, P. 023606.

23. Deuar P., Drummond P. D. Gauge p representations for quantum-dynamical problems: Removal of boundary terms. Phys. Rev. A., 2002, 66, P. 033812.

24. Corney J. F., Drummond P. D. Gaussian quantum operator representation for bosons. Phys. Rev. A., 2003, 68, P. 063822.

25. Corney J. F., Drummond P. D. Gaussian phase-space representations for fermions. Phys. Rev. B., 2006, 73, P. 125112.

26. Quantum dynamics in ultracold atomic physics / Qiong-Yi He, Margaret D. Reid, Bogdan Opanchuk et al. Front. Phys., 2012, 7, P. 16.

27. Blaszak M., Doma´nski Z. Phase space quantum mechanics. Ann. Phys. (N. Y.), 2012, 327, P. 167–211.

28. Gardiner C. Stochastic Methods: A Handbook for the Natural and Social Sciences. Springer Series in Synergetics, Berlin, Germany, Springer, 2009. ISBN: 3540707123, 9783540707127.

29. Frenkel D., Smit B. Understanding Molecular Simulation. New York : Academic Press, 2001. ISBN: 0122673514, 9780122673511.

30. Cahill K. E., Glauber R. J. Ordered expansions in boson amplitude operators. Phys. Rev., 1969, 177, P. 1857.

31. Cahill K. E., Glauber R. J. Density operators and quasiprobability distributions. Phys. Rev., 1969, 177, P. 1882.

32. Cahill K. E., Glauber R. J. Density operators for fermions. 1999, 59, P. 1538.

33. Gilchrist A., Gardiner C. W., Drummond P. D. Positive p representation: Application and validity. Phys. Rev. A., 1997, 55, P. 3014.

34. Juillet O., Chomaz P. Exact stochastic mean-field approach to the fermionic many-body problem. Phys. Rev. Lett., 2002, 88, P. 142503.

35. Carusotto I., Castin Y. Exact reformulation of the bosonic many-body problem in terms of stochastic wave functions: an elementary derivation. Ann. Henri Poincar´e, 2003, 4, P. S783.

36. Breuer H.-P. The non-markovian quantum behaviour of open systems: An exact monte carlo method employing stochastic product states. Eur. Phys. J. D., 2004, 29, P. 105.


Review

For citations:


Polyakov E.A., Vorontsov-Velyaminov P.N. Exact classical stochastic representations of the many-body quantum dynamics. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(4):501-512. https://doi.org/10.17586/2220-8054-2015-6-4-501-512

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)