Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Benchmark solutions for nanoflows

Abstract

Essential viscosity variation creates additional difficulties for numerical investigation of flows through nanotubes and nanochannels. Benchmark solutions of the Stokes and continuity equations with variable viscosity are suggested. This is useful for testing of numerical algorithms applied to this problem.

About the Authors

A. I. Popov
ITMO University
Russian Federation

Kronverkskiy 49, 197101, St. Petersburg



I. S. Lobanov
ITMO University
Russian Federation

Kronverkskiy 49, 197101, St. Petersburg



I. Yu. Popov
ITMO University
Russian Federation

Kronverkskiy 49, 197101, St. Petersburg



T. V. Gerya
Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology Zurich (ETH)
Switzerland

5 Sonnegstrasse, CH-8092 Zurich



References

1. Li, D. (Ed.) Encyclopedia of Microfluidics and Nanofluidics. Springer, New York (2008).

2. Popov I.Yu. Statistical derivation of modified hydrodynamic equations for nanotube flows, Phys. Scripta., 83, P. 045601/1-3 (2011).

3. I.Yu. Popov, S.A. Chivilikhin, V.V. Gusarov. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Phys., Chem., Math., 3(1), P. 7–26 (2012).

4. Frenkel Ya. I. New development of the theory of liquid state. Appl. Uspekhi Fiz. Nauk., 25. P. 1-18 (1941).

5. Antognozzi M., Humphris A. D. L., Miles M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett., 78, P. 300-302 (2001).

6. Li T.-D., Gao J., Szoszkeiwicz R., Landmann U., Riedo E. Structured and viscous water in subnanometer gaps. Phys. Rev. B., 75, P. 115415-1115415-6 (2007).

7. Kolesnikov A.I., Zanotti J.-M., Loong Ch.-K., and Thiyagarajan P.Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement. Phys. Lett., 93, P. 035503-1035503-4 (2004).

8. Kolesnikova A.I., C.-K. Loonga C.K., de Souzaa N.R., Burnhamb C.J. Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes. Physica B, 385386, P. 272–274 (2006).

9. Deryagin B. V., Ovcharenko F. D., Churaev V. N. (Eds.) Water in Disperse Systems. Moskow, Nauka (1989).

10. Gerya T. Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge (2010).

11. Gerya T.V., May D.A., Duretz T. An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity. Geochem., Geophys., Geosyst. 14, DOI: 10.1002/ggge.20078 (2013).

12. Blankenbach B., Busse F., Christensen U. et al, A benchmark comparison for mantle convection codes. Geophysical Journal International 98, P. 23–38 (1989).

13. Gerya T.V., Yuen D.A., Characteristic-based marker-in-cell method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planetary Interiors, 140, P. 293–318 (2003).

14. Gerya T.V., Yuen D.A. Robust characteristics method for modeling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planetary Interiors, 163, P. 83–105 (2007).


Review

For citations:


Popov A.I., Lobanov I.S., Popov I.Yu., Gerya T.V. Benchmark solutions for nanoflows. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(3):391-399.

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)