Benchmark solutions for nanoflows
Abstract
Essential viscosity variation creates additional difficulties for numerical investigation of flows through nanotubes and nanochannels. Benchmark solutions of the Stokes and continuity equations with variable viscosity are suggested. This is useful for testing of numerical algorithms applied to this problem.
About the Authors
A. I. PopovRussian Federation
Kronverkskiy 49, 197101, St. Petersburg
I. S. Lobanov
Russian Federation
Kronverkskiy 49, 197101, St. Petersburg
I. Yu. Popov
Russian Federation
Kronverkskiy 49, 197101, St. Petersburg
T. V. Gerya
Switzerland
5 Sonnegstrasse, CH-8092 Zurich
References
1. Li, D. (Ed.) Encyclopedia of Microfluidics and Nanofluidics. Springer, New York (2008).
2. Popov I.Yu. Statistical derivation of modified hydrodynamic equations for nanotube flows, Phys. Scripta., 83, P. 045601/1-3 (2011).
3. I.Yu. Popov, S.A. Chivilikhin, V.V. Gusarov. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Phys., Chem., Math., 3(1), P. 7–26 (2012).
4. Frenkel Ya. I. New development of the theory of liquid state. Appl. Uspekhi Fiz. Nauk., 25. P. 1-18 (1941).
5. Antognozzi M., Humphris A. D. L., Miles M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett., 78, P. 300-302 (2001).
6. Li T.-D., Gao J., Szoszkeiwicz R., Landmann U., Riedo E. Structured and viscous water in subnanometer gaps. Phys. Rev. B., 75, P. 115415-1115415-6 (2007).
7. Kolesnikov A.I., Zanotti J.-M., Loong Ch.-K., and Thiyagarajan P.Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement. Phys. Lett., 93, P. 035503-1035503-4 (2004).
8. Kolesnikova A.I., C.-K. Loonga C.K., de Souzaa N.R., Burnhamb C.J. Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes. Physica B, 385386, P. 272–274 (2006).
9. Deryagin B. V., Ovcharenko F. D., Churaev V. N. (Eds.) Water in Disperse Systems. Moskow, Nauka (1989).
10. Gerya T. Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge (2010).
11. Gerya T.V., May D.A., Duretz T. An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity. Geochem., Geophys., Geosyst. 14, DOI: 10.1002/ggge.20078 (2013).
12. Blankenbach B., Busse F., Christensen U. et al, A benchmark comparison for mantle convection codes. Geophysical Journal International 98, P. 23–38 (1989).
13. Gerya T.V., Yuen D.A., Characteristic-based marker-in-cell method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planetary Interiors, 140, P. 293–318 (2003).
14. Gerya T.V., Yuen D.A. Robust characteristics method for modeling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planetary Interiors, 163, P. 83–105 (2007).
Review
For citations:
Popov A.I., Lobanov I.S., Popov I.Yu., Gerya T.V. Benchmark solutions for nanoflows. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(3):391-399.