Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Benchmark solutions for nanoflows

Аннотация

Essential viscosity variation creates additional difficulties for numerical investigation of flows through nanotubes and nanochannels. Benchmark solutions of the Stokes and continuity equations with variable viscosity are suggested. This is useful for testing of numerical algorithms applied to this problem.

Ключевые слова


Об авторах

A. Popov
ITMO University
Россия


I. Lobanov
ITMO University
Россия


I. Popov
ITMO University
Россия


T. Gerya
Institute of Geophysics, Department of Earth Sciences, Swiss Federal Institute of Technology Zurich (ETH)
Швейцария


Список литературы

1. Li, D. (Ed.) Encyclopedia of Microfluidics and Nanofluidics. Springer, New York (2008).

2. Popov I.Yu. Statistical derivation of modified hydrodynamic equations for nanotube flows, Phys. Scripta., 83, P. 045601/1-3 (2011).

3. I.Yu. Popov, S.A. Chivilikhin, V.V. Gusarov. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Phys., Chem., Math., 3(1), P. 7–26 (2012).

4. Frenkel Ya. I. New development of the theory of liquid state. Appl. Uspekhi Fiz. Nauk., 25. P. 1-18 (1941).

5. Antognozzi M., Humphris A. D. L., Miles M. J. Observation of molecular layering in a confined water film and study of the layers viscoelastic properties. Appl. Phys. Lett., 78, P. 300-302 (2001).

6. Li T.-D., Gao J., Szoszkeiwicz R., Landmann U., Riedo E. Structured and viscous water in subnanometer gaps. Phys. Rev. B., 75, P. 115415-1115415-6 (2007).

7. Kolesnikov A.I., Zanotti J.-M., Loong Ch.-K., and Thiyagarajan P.Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement. Phys. Lett., 93, P. 035503-1035503-4 (2004).

8. Kolesnikova A.I., C.-K. Loonga C.K., de Souzaa N.R., Burnhamb C.J. Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes. Physica B, 385386, P. 272–274 (2006).

9. Deryagin B. V., Ovcharenko F. D., Churaev V. N. (Eds.) Water in Disperse Systems. Moskow, Nauka (1989).

10. Gerya T. Introduction to Numerical Geodynamic Modelling, Cambridge University Press, Cambridge (2010).

11. Gerya T.V., May D.A., Duretz T. An adaptive staggered grid finite difference method for modeling geodynamic Stokes flows with strongly variable viscosity. Geochem., Geophys., Geosyst. 14, DOI: 10.1002/ggge.20078 (2013).

12. Blankenbach B., Busse F., Christensen U. et al, A benchmark comparison for mantle convection codes. Geophysical Journal International 98, P. 23–38 (1989).

13. Gerya T.V., Yuen D.A., Characteristic-based marker-in-cell method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planetary Interiors, 140, P. 293–318 (2003).

14. Gerya T.V., Yuen D.A. Robust characteristics method for modeling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planetary Interiors, 163, P. 83–105 (2007).


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2014;5(3):391-399.

For citation:


Popov A.I., Lobanov I.S., Popov I.Yu., Gerya T.V. Benchmark solutions for nanoflows. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(3):391-399.

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)