Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Entropic sampling of star-shaped polymers with different number of arms: temperature dependencies of structural properties

https://doi.org/10.17586/2220-8054-2015-6-4-513-523

Abstract

The lattice model for a star-shaped polymer with a total number of up to 72 segments is considered. The number of arms varied, ranging from 2 to 6. Entropic sampling Monte Carlo simulation is used to obtain the equilibrium, thermal and structural properties of the considered systems over a wide range of temperatures. The coil-globule transition is observed and the transition temperature is shown to shift toward lower temperatures with an increase in the number of arms.

About the Authors

I. A. Silanteva
Saint Petersburg State University
Russian Federation

Dept. of molecular biophysics and polymer physics,
Faculty of Physics

198504, Saint Petersburg



P. N. Vorontsov-Velyaminov
Saint Petersburg State University
Russian Federation

Dept. of molecular biophysics and polymer physics,
Faculty of Physics

198504, Saint Petersburg



References

1. Rud O. V., Mercurieva A. A., Leermakers F. A. M., and Birshtein T. M. Collapse of polyelectrolyte star. Theory and modeling. Macromolecules, 2012, 45, P. 2145–2160.

2. Muzafarov A., Vasilenko N., Tatarinova E., Ignateva G., Myakushev V., Obrezkova M., Meshkov I., Voronina N., Novozhilova O. Macromolecular nanoobjects — promising area of polymer chemistry. Macromolecular compounds C., 2011, 53(7), P. 1217–1230 (in Russian).

3. Likos C. N. Soft matter with soft particles. Soft Matter., 2006, 2, P. 478–498.

4. Wang Z., He X. Phase transition of a single star polymer: a Wang-Landau sampling study. J. Chem. Phys., 2011, 135, P. 094902.

5. Polotsky A. A., Zhulina E. B., Birshtein T. M. Effect of the ionic strength on collapse transition in star-like polyelectrolytes. Macromol. Symp., 2009, 278, P. 24–31.

6. Alhoranta A. M., Lehtinen J. K., Urtti A. O., Butcher S. J., Aseyev V. O., Tenhu H. J. Cationic amphiphilic star and linear block copolymers: synthesis, self-assembly, and in vitro gene transfection. Biomacromolecules, 2011, 12, P. 3213–3222.

7. Aryal S., Prabaharan M., Pilla S., Gong S. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery. International Journal of Biomacromolecules, 2009, 44, P. 346.

8. Cameron D., Shaver M. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology. Chemical Society Reviews, 2011, 40, P. 1761–1776.

9. Grossberg A. Y., Khokhlov A. R. Statistical physics of macromolecules. Moscow, Nauka, 1989 (in Russian).

10. Clisby N. Efficient implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys., 2010, 140, P. 349–392.

11. Zifferer G., Eggerstorfer D. Monte Carlo simulation studies of the size and shape of linear and starbranched copolymers embedded in a tetrahedral lattice. Macromol. Theory. Simul., 2010, 19, P. 458–482.

12. W¨ust T., Lee Yu., Landau D. Unraveling the beautiful complexity of simple lattice model polymers and proteins using Wang-Landau sampling. J. Stat. Phys., 2011, 144, P. 638–651.

13. Yurchenko A. A., Antyukhova M. A., Vorontsov-Velyaminov P. N. Investigation of the interaction of the polymer with the surface by entropic modeling. J. Structure Chemistry., 2011, 52(6), P. 1216–1223 (in Russian).

14. Vogel T., Bachmann M., and Janke W. Freezing and collapse of flexible polymers on regular lattices in three dimensions. Phys. Rev. E., 2007, 76, P. 061803.

15. Volkov N. A., Yurchenko A. A, Lyubartsev A. P., Vorontsov-Velyaminov P. N. Entropic sampling of free and ring polymer chains. Macromol. Theory Simul., 2005, 14, P. 491–504.

16. Berg B. A., Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys. Rev. Lett., 1992, 68, P. 9–12.

17. Lee J. New Monte Carlo algorithm: entropic sampling. Phys. Rev. Lett., 1993, 71, P. 211–214.

18. Wang F., Landau D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 2001, 86, P. 2050–2035.

19. Vorontsov-Velyaminov P. N., Yurchenko A. A., Antyukhova M. A., Silantyeva I. A., Antipina A. Yu. Entropic sampling of polymers: A chain near a wall, polyelectrolytes, star-shaped polymers. Polymer Science C, 2013, 55(1), P. 112–124.

20. Silantyeva I. A., Vorontsov-Velyaminov P. N. Thermodynamic properties of star shaped polymers investigated with Wang-Landau Monte Carlo simulations. Macromol. Symp., 2012, 317-318, P. 267–275.

21. Silantyeva I. A., Vorontsov-Velyaminov P. N. The calculation of the density of states and the thermal properties of the polymer chains and stars on a lattice by Monte Carlo method using the Wang-Landau algorithm. Numerical Methods and Programming, 2011, 12, P. 397–408 (in Russian).

22. Seaton D. T., W¨ust T., Landau D. P. Collapse transition in a flexible homopolymer chain: application of the Wang-Landau algorithm. Phys. Rev. E., 2010, 81, P. 011802.

23. Martemyanova J. A., Stukan M. R., Ivanov V. A., M¨uller M., Paul W., Binder K. Dense orientationally ordered states of a single semiflexible macromolecule: An expanded ensemble Monte Carlo simulation. J. Chem. Phys., 2005, 122, P. 174907.

24. Wang Z., Wang L., Chen Y., He X. Phase transition behaviours of a single dendritic polymer. Soft Matter., 2014, 10, P. 4142–4150.

25. Arkin H., Janke W. Ground-State properties of a polymer chain in attractive sphere. J. Phys. Chem. B., 2012, 116, P. 10379–10386.


Review

For citations:


Silanteva I.A., Vorontsov-Velyaminov P.N. Entropic sampling of star-shaped polymers with different number of arms: temperature dependencies of structural properties. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(4):513-523. https://doi.org/10.17586/2220-8054-2015-6-4-513-523

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)