Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Crystallite model for flow in nanotube caused by wall soliton

Аннотация

Fluid flow in a nanotube, caused by a moving soliton-like perturbation of its wall, is considered. We use a crystallite model for nanotube flow. A picture of the flow is described. The formula for crystallite velocity is derived, allowing one to find fluid flux through a nanotube.

Ключевые слова


Об авторах

O. Rodygina
ITMO University
Россия


S. Chivilikhin
ITMO University
Россия


I. Popov
ITMO University
Россия


V. Gusarov
Ioffe Physical-Technical Institute RAS
Россия


Список литературы

1. Encyclopedia of microfluidics and nanofluidics / edited by Dongqing Li. New York : Springer (2008).

2. Li T.-D., Gao J., Szoszkeiwicz R., Landnan U., RiedoE. Structured and viscous water in subnanometer gaps. Phys. Rev. B., 75, P. 115415-1 – 115415-6 (2007).

3. Mashl R. J., Joseph S., Aluru N. R., Jakobsson E. Anomalously Immobilized Water: A New Water Phase Induced by Confinement in Nanotubes. Nano Letters, 3(5), P. 589–592 (2003).

4. Kolesnikova A.I., C.-K. Loonga C.K., de Souzaa N.R., Burnhamb C.J. Moravskyc A.P. Anomalously soft dynamics of water in carbon nanotubes. Physica B, 385–386, P. 272–274 (2006).

5. A.I. Kolesnikov, J.-M. Zanotti, Ch.-K. Loong, and P. Thiyagarajan Anomalously Soft Dynamics ofWater in a Nanotube: A Revelation of Nanoscale Confinement. Phys. Rev. Lett., 93(3), P. 035503 (2004).

6. J.K. Holt, H. Gyu Park, Y.Wang, M.Stadermann,A.B. Artyukhin, C.P.Grigoropoulos, A.Noy, O.Bakajin. Fast Mass Transport Through Sub–2-Nanometer Carbon Nanotubes Science 312, 1034, P. 1034–1037 (2006).

7. V.P. Maslov. Superfluidity of classical liquid in a nanotube for even and odd numbers of neutrons in a molecule. Theoretical and Mathematical Physics, 153(3), P. 1677–1796 (2007).

8. Hanasaki I., Nakatani A. Fluidized piston model for molecular dynamics simulations of hydrodynamic flow. Modelling Simul. Mater. Sci. Eng., 14, P. 9–20 (2006).

9. Belonenko M.B., Chivilikhin S.A., Gusarov V.V., Popov I.Yu. and Rodygina O.A. Soliton-induced flow in carbon nanotubes. Europhysics Letters, 101(6), P. 66001-p1-66001-p3 (2013).

10. M. Chen, J. Zang, D. Xiao, et al. Nanopumping Molecules via a Carbon Nanotube. Nano Research, 2(12), P. 938–944 (2009).

11. Z.Insepov, D.Wolf, A.Hassanein. Nanopumping using carbon nanotubes. Nano Lett., 6(9), P. 1893–1895 (2006).

12. M.Chen, J.Zang, D.Xiao, et al. Mechanical wave propagation in carbon nanotubes driven by an oscillating tip actuator. J. Appl. Phys., 105(2), P. 026102 (2009).

13. Chivilikhin S.A., Gusarov V.V., Popov I.Yu. Flows in nanostructures: hybrid classical-quantum models. Nanosystems: Physics, Chemistry, Mathematics, 3(1), P. 7–26 (2012).

14. Chivilikhin S.A., Gusarov V.V., Popov I.Yu., Svitenkov A. I. Model of fluid flow in a nano-channel. Russian J. Math. Phys., 15(3), P. 410–412 (2008).

15. Popov I.Yu. Statistical derivation of modified hydrodynamic equations for nanotube flows. Physica Scripta, 83, P. 045601/1-3 (2011).

16. V.V. Gusarov, I.Yu. Popov. Flows in two-dimentional non-autonomous phases in polycrystalline systems. Nuovo Cim., 18D(7), P. 799–805 (1996).


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2014;5(3):400-404.

For citation:


Rodygina O.A., Chivilikhin S.A., Popov I.Yu., Gusarov V.V. Crystallite model for flow in nanotube caused by wall soliton. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(3):400-404.

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)