Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions

https://doi.org/10.17586/2220-8054-2015-6-5-697-703

Abstract

Processes occurring during the thermal treatment of nanocrystalline zirconium dioxide are reviewed. Changes in the dimensions and structure of ZrO2 that occur depend upon the calcination conditions used. 

About the Author

O. V. Almjasheva
Saint Petersburg Electrotechnical University “LETI”
Russian Federation

St. Petersburg



References

1. Garvie R.C. The Occurrence of Metastable tetragonal zirconia as a crystallite size effect. The Journal of Physical chemistry, 1965, 69(4), P. 1238.

2. Shukla S., Seal S. Mechanism of room temperature metastable tetragonal phase stabilisation in zirconia. International materials reviews, 2005, 50(1), P. 45.

3. Bugrov A.N., Almjasheva O.V., Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: pysics, chemistry, mathematics, 2013, 4(6), P. 810.

4. Oleinikov N.N., Pentin I.V., Murav’eva G.P., Ketsko V.A. Highly disperse metastable ZrO2-based phases. Russian Journal of Inorganic Chemistry, 2001, 46(9), P. 1275.

5. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russian Journal of General Chemistry, 2002, 72(6), P. 849.

6. Kolen’ko Yu.V., Maksimov V.D., Garshev A.V., Mukhanov V.A., Oleynikov N.N., Churagulov B.R. Physicochemical properties of nanocrystalline zirconia hydrothermally synthesized from zirconyl chloride and zirconyl nitrate aqueous Solutions. Russian Journal of Inorganic Chemistry, 2004, 49(8), P. 1133.

7. Li F., Li Y., Song Z., Ma F., Xu K., Cui H. Evolution of the crystalline structure of zirconia nanoparticles during their hydrothermal synthesis and calcination: Insights into the incorporationsof hydroxyls into the lattice. J. Eur. Ceram. Soc., 2015, 35(8), P. 2361.

8. Dwivedi R., Maurya A., Verma A., Prasad R., Bartwal K.S. Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. Journal of Alloys and Compounds, 2011, 509, P. 6848.

9. Almjasheva O.V., Fedorov B.A., Smirnov A.V., Gusarov V.V. Size, morphology and structure of the particles of zirconia nanopowder obtained under hydrothermal conditions. Nanosystems: physics, chemistry, mathematics, 2010, 1(1), P. 26–37.

10. D. Isfahani T., Javadpour J., Khavandi A., Dinnebier R., Reza Rezaie H., Goodarzi M. Mechanochemical synthesis of zirconia nanoparticles: Formation mechanism and phase transformation. Int. Journal of Refractory Metals and Hard Materials, 2012, 31, P. 21.

11. Davis B.H. Effect of pH on crystal phase of ZrO2 precipitated from solution and calcined at 600◦C. Commun. Am. Ceram. Soc., 1984, 67(8), P. 168.

12. dos Santos V., da Silveira N.P., Bergmannc C.P. In-situ evaluation of particle size distribution of ZrO2- nanoparticles obtained by sol-gel. Powder Technology, 2014, 267, P. 392.

13. Mommer N., Lee T., Gardner J.A. Stability of monoclinic and tetragonal zirconia at low oxygen partial pressure. J. Mater. Res., 2000, 15(2), P. 377.

14. Sharikov F. Yu., Almjasheva O. V., Gusarov V. V. Thermal Analysis of Formation of ZrO2 nanoparticles under hydrothermal conditions. Russian Journal of Inorganic Chemistry, 2006, 51(10), P. 1538.

15. Sharikov F.Yu., Meskin P.E., Ivanov V.K., Churagulov B.R., Tret’yakov Yu.D. Hydrothermal synthesis of nanosized zirconia as probed by heat-flow calorimetry. Doklady Chemistry, 2005, 403(2), P. 152.

16. Al’myasheva O.V., Ugolkov V.L., Gusarov V.V. Thermochemical analysis of desorption and adsorption of water on the surface of zirconium dioxide nanoparticles. Russian Journal of Applied Chemistry, 2008, 81(4), P. 609.

17. Karakchiev L.G., Avvakumov E.G., Vinokurova O.B., Gusev A.A., Lyakhov N.Z. Formation of nanodispersed zirconia during sol-gel and mechanochemical processes. Russian Journal of Inorganic Chemistr, 2003, 48(10), P. 1447.

18. Pechenyuk S.I., Mikhailova N.L., Kuz’mich L.F. Physicochemical investigation of titanium(IV) and zirconium(IV) oxohydroxide xerogels. Russian Journal of Inorganic Chemistry. 2003, 48(9), P. 1420.

19. Osend M.I.i,. Moya J.S., Serna C.J., J. Soria Metastble of tetragonal zirconya powders. J. Am. Ceram. Soc., 1985, 68, P. 145.

20. Mondal A., Ram S. Reconstructive phase formation of ZrO2 nanoparticles a new orthorhombic crystal structure from an energized porous ZrO(OH)2 xH2O precursor. Ceramics International. 2004, 30, P. 239.

21. Inoue M., Sato K., Nakamura T., Inui T. Glycothermal synthesis of zirconia-rare earth oxide solid solutions. Catalysis Letters, 2000, 65, P. 79.

22. Lecloux A.J. Synthesis and characterization of monodisperse spherical zirconia particles. Journal of Sol-Gel Science and Technology, 1997, 8, P. 207.

23. Strekalovsky V.N., Polezhaev Y.M., Palguev S.F. Oxides with impurity disordering: composition, structure, phase transformations. M .: Nauka. 1987. 160 p.(In Russian).

24. Srdi´c V.V., Winterer M. Comparison of nanosized zirconia synthesized by gas and liquid phase methods. J. Eur. Ceram. Soc, 2006, 26(15), P. 3145.

25. Guo X. Hydrothermal degradation mechanism of tetragonal zirconia. J. of Mater. Sci., 2001, 36(15), P. 3737.

26. Murase Y., Kato E. Role of water vapor in crystallite growth and tetragonal-monoclinic phase transformation of ZrO2. J. Am. Ceram. Soc., 1983, 66, P. 196.

27. Yoshimura M. Phase Stability of Zirconia. Am. Ceram. Soc. Bull., 1998, 67, P. 1950.

28. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase State and Particle Size of Ultradispersed Zirconium Dioxide as Influenced by Conditions of Hydrothermal Synthesis. Russian Journal of General Chemistr, 1999, 69(8), P. 1265.

29. Kollong R. Nonstoichiometry. M.: Mir. 1974. P. 288 (In Russian)

30. Becker J., Bremholm M., Tyrsted C., Pauw B., K. Marie ∅. Jensen, Eltzholt J., Christensen M., Iversen B.B. Experimental setup for in situ X-ray SAXS/WAXS/ PDF studies of the formation and growth of nanoparticles in near- and supercritical fluids. J. Appl. Cryst., 2010, 43, P. 729.

31. Krzhizhanovskaya M.G., Filatov S.K., Almjasheva O.V., Bubnova R.S., Meyer D.C., Paufler P., Gusarov V.V. The XRD study of ZrO2 nanopowders. Book of abstracts. “Nanoparticles, nanostructures and nanocomposites”. Topical meeting of the European Ceramic Soc. 5-7 July 2004. St. Peterburg, 2004, P. 31.


Review

For citations:


Almjasheva O.V. Heat-stimulated transformation of zirconium dioxide nanocrystals produced under hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):697-703. https://doi.org/10.17586/2220-8054-2015-6-5-697-703

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)