Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Cryometry and excess functions of the adduct of light fullerene C60 and arginine – C60(C6H12NaN4O2)8H8 aqueous solutions

https://doi.org/10.17586/2220-8054-2015-6-5-715-725

Abstract

Cryometry investigation of C60(C6H12NaN4O2)8H8 - H2O solutions was made over concentrations ranging from 0.1 – 10 g of fullerene-arginine adduct per 1 dm3 . Freezing point depression was measured for these aqueous solutions. Excess functions for water and fullerene-arginine adduct activities, activity coefficients and excess Gibbs energy of the solutions were calculated. All solutions demonstrate huge deviations from ideality. The last fact, to our opinion, is caused by the very specific – hierarchical type of association of fullerene-arginine adducts in aqueous solution components, which is proved by the results of our visible light scattering analysis. 

About the Authors

M. Yu. Matuzenko
St. Petersburg State Technological Institute (Technical University)
Russian Federation

St. Petersburg



A. A. Shestopalova
St. Petersburg State Technological Institute (Technical University)
Russian Federation

St. Petersburg



K. N. Semenov
St. Petersburg State University
Russian Federation

St. Petersburg



N. A. Charykov
St. Petersburg State Electro-technical University (LETI); St. Petersburg State Technological Institute (Technical University)
Russian Federation

St. Petersburg



V. A. Keskinov
St. Petersburg State Technological Institute (Technical University)
Russian Federation

St. Petersburg



References

1. K.N. Semenov, N.A. Charykov, I.V. Murin, Yu.V. Pukharenko. Physico-Chemical Properties of C60-trismalonic-derivative Water Solutions. J. of Molecular Liquids, 2015, 202, P. 50–58.

2. K.N. Semenov, N.A. Charykov, I.V. Murin, Yu.V. Pukharenko. Physico-chemical properties of the fullerenol70 water solutions. J. of Molecular Liquids, 2015, 202, P. 1–8.

3. D.P. Tyurin, K.N. Semenov, et al. Dissociation of Fullerenol-d water solutions and their electric conductivity. Rus. J. of Phys. Chem., 2015, 89 (5), P. 764–768.

4. I.A. Pestov, V.A. Keskinov, et al. Solubility of [C60(=C(COOH))2]3 in ternary system [C60(=C(COOH)2)3]– SmCl3–2 at 25 ◦C. Rus. J. of Phys. Chem., 2015, 89 (6), P. 990–992.

5. K.N. Semenov, N.A. Charykov, et al. Dependence of the dimension of the associates of water-soluble trismalonate of light fullerene — C60[= C(COOH)2]3 in water solutions at 25 ◦C. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (2), P. 294–298.

6. D.P. Tyurin, K.N. Semenov, et al. Dissociation of Fullerenol-70-d in Aqueous Solutions and Their Electric Conductivity. Russian Journal of Physical Chemistry A, 2015, 89 (5), P. 771–775.

7. K.N. Semenov, I.G. Kanterman, et al. Solid–Liquid Phase Equilibria in the Fullerenol-d–CuCl2–H2O System at 25 ◦C. Russian Journal of Physical Chemistry, 2014, 88 (6), P. 1073–1076.

8. K.N. Semenov, N.A. Charykov, et al. Synthesis and identification water-soluble tris-malonate of light fullerene – C60[(=C(COOH)2]3. Nanosystems: physics, chemistry, mathematics, 2014, 5 (2), P. 315–319.

9. K.N. Semenov, N.A. Charykov, et al. Volume properties of water solution and refraction at 25 ◦C watersoluble tris-malonate of light fullerene- C60 [= C(COOH)2]3. Nanosystems: physics, chemistry, mathematics, 2014, 5 (3), P. 427–434.

10. K.N. Semenov, N.A. Charykov, et al. Poly-thermal solubility and complex thermal analysis of water-soluble tris-malonate of light fullerene – C60[= C(COOH)2]3. Nanosystems: physics, chemistry, mathematics, 2014, 5 (3), P. 435–440.

11. K.N. Semenov, I.G. Kanterman, et al. Solubility in the Ternary System Fullerenol-d–Uranyl Sulfate–Water at 25 ◦ . Radiokhimiya, 2014, 56 (5), P. 493–495.

12. K.N. Semenov, N.A. Charykov, et al. Concentration dependence of electric conductivity and pH for aqueous solutions of water soluble light fullerene C60 [= C(COOH)2]3 trismalonate. Nanosystems: physics, chemistry, mathematics, 2014, 5 (5), P. 709–717.

13. K.N. Semenov, N.A. Charykov, et al. Fullerenol-d Solubility in Fullerenol-d–Inorganic Salt–Water Ternary Systems at 25 ◦C. Industrial & Engineering Chemistry Research, 2013, 52, P. 16095–16100.

14. K.N. Semenov, N.A. Charykov, V.A. Keskinov. Fullerenol Synthesis and Identification. Properties of the Fullerenol Water Solutions. J. Chem. Eng. Data, 2011, 56, P. 230–239.

15. K.N. Semenov, N.A Charykov. Solubility of light fullerenes and fullerenol in biocompatible with human beings solvents. Chapter in Handbook: Grapes: Cultivation, Varieties and Nutritional Uses. Nova Sciences Publishers, Inc., Editor R.P. Murphy et al., 2011, P. 1–48.

16. K.N. Semenov, N.A. Charykov. Phase Equilibria in the Fullerene Containing Systems. Handbook on Fullerene: Synthesis, Properties and Applications, Editor R.F. Verner, C. Benvegny, 2012, P. 1–91.

17. K.N. Semenov, N.A. Charykov. Solubility of light fullerenes and it’s derivatives. Germany: Lambert Academic Publishing, 2011, 237 p.

18. L.B. Gan, C.P. Luo. Water-soluble fullerene derivatives, synthesis and characterization of β-alanine C60 adducts. Chinese Chemical letters, 1994, 5 (4), P. 275–278.


Review

For citations:


Matuzenko M.Yu., Shestopalova A.A., Semenov K.N., Charykov N.A., Keskinov V.A. Cryometry and excess functions of the adduct of light fullerene C60 and arginine – C60(C6H12NaN4O2)8H8 aqueous solutions. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(5):715-725. https://doi.org/10.17586/2220-8054-2015-6-5-715-725

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)