Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of calcination temperature on the structural and optical properties of nickel oxide nanoparticles

Abstract

Herein, we report the effect of calcination on the structural and optical properties of nanocrystalline NiO. NiO nanoparticles were synthesized by chemical precipitation method using nickel nitrate hexahydrate and ammonium carbonate. Thermogravimetric analysis was done to determine the thermal behavior of the precursor. The samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), UV-visible and photoluminescence (PL) spectroscopy. Crystallite size and lattice strain on peak broadening of NiO nanoparticles have been studied using Williamson–Hall (WH) analysis. Significant modifications were observed in the crystallite size, absorption spectra and photoluminescence intensity due to calcination. The desired structural and optical properties of NiO nanoparticle make it as a promising material for optoelectronic applications.

About the Authors

P. A. Sheena
M. E. S. Asmabi College
India

P. Vemballur – 680671, Kerala



K. P. Priyanka
Nanoscience Research Centre (NSRC), Department of Physics, Nirmala College
India

Muvattupuzha - 686 661, Kerala



N. A. Sabu
Nanoscience Research Centre (NSRC), Department of Physics
India

N. Aloysius Sabu

Muvattupuzha - 686 661, Kerala



B. Sabu
Nanoscience Research Centre (NSRC), Department of Physics, Nirmala College
India

Boby Sabu

Muvattupuzha - 686 661, Kerala



T Varghese
Nanoscience Research Centre (NSRC), Department of Physics, Nirmala College
India

Thomas Varghese

Muvattupuzha - 686 661, Kerala



References

1. Dharmaraj N., Prabu P., Nagarajan S., Kim C.H., Park J.H., Kim H.Y. Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Materials Science and Engineering B, 128, P. 111–114 (2006).

2. Feldman C., Jungk H.O. Polyol-Mediated preparation of nanoscale oxide particles. Angew Chem. Int. Ed., 40, P. 359 (2001).

3. Matsumiya M., Qiu F., et al. Thin-film Li-doped NiO for thermoelectric hydrogen gas sensor. Thin Solid Films, 419(1-2), P. 213–217 (2002).

4. Wang, Y., Zhu, J., et al. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta, 437 (1–2), P. 106–109 (2005).

5. Ichiyanagi Y., Wakabayashi N., et al. Magnetic properties of NiO nanoparticles. Physica B, 329–333 (Part 2), P. 862–863 (2003).

6. Biju V., Abdul Khadar M. Analysis of AC electrical properties of nanocrystalline nickel oxide. Mater. Sci. Eng. A, 304–306, P. 814–817 (2001).

7. Li F., Chen H., Wang C., Hu K. A novel modified NiO cathode for molten carbonate fuel cells. J. Electroanal. Chem., 531(1), P. 53–60 (2002).

8. Nuli Y., Zhao S., Qin Q. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. J. Power Sources, 114(1), P. 113–120 (2003).

9. Mallick P., Sahoo C. S., Mishra N. C. Structural and Optical Characterization of NiO nanoparticles synthesized by sol-gel route. AIP Conf. Proc., 1461, P. 229–232 (2012).

10. Alagiri M., Ponnusamy S., Muthamizhchelvam C. Synthesis and Characterization of NiO nanoparticles by sol-gel method. J. Mater Sci: mater Electron, 23 P. 728–732 (2012).

11. Jeevanandam P., Ranga Rao Pulimi V. Synthesis of nanocryst alline NiO by sol-gel and homogeneous precipitation methods. Indian J Chem., 51A, P. 586–590 (2012).

12. Mallick P., Chandana rath, Biswal R., Mishra N. C. Structure and magnetic properti es of Fe doped NiO. Indian J. Phys., 83, P. 517 (2009).

13. Takami S., Hayakawa R., Wakayama Y., Chikyow T. Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor. Nanotechnol, 21, P. 134009 (2010).

14. Anandan K., Rajendran V. Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties. Mater. Sci. Semicond. Process, 14, P. 43 (2011).

15. Chakrabarty S., Chatterjee K. Synthesis and characterization of nanodimensional NiO semiconductor. J. Phy. Sci., 13, P. 245–250 (2008).

16. Jianfen Li, Rong Yan, et al. Preparation of nano-nio particles and evaluation of their catalytic activity in pyrolyzing biomass components. American Chem. Soc., P. 1021 (2008).

17. Jahromi S. P., Huang N. M., Muhamad M. R., Lim H. N. Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram. Int., 39, P. 3909 (2008).

18. Varghese T., Balakrishna K. M. Nanotechnology: An introduction to synthesis, properties and applications. Atlantic Publishers, New Delhi, 2011, P. 111.

19. Mote V.D., Purushotham Y., Dole B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor Appl Phys. 6:1–8 (2012).

20. Prabhu Y. T., Venkateswara K. R., Sesha V.S.K. and Siva Kumari B. X-ray analysis of Fe doped ZnO nanoparticles by Williamson-Hall and size-strain methods. Int. J. Engg. Adv. Tech., 2(4), P. 268 (2013).

21. Williamson G.K. Hall W. H. X-ray line broadening from filed Al and W. Acta Metall., 1, P. 22 (1953).

22. Fern´andez G. M., Mart´ınez-Arias A., Hanson J. C., Rodr´ıguez J. A. Nanostructured oxides in chemistry: Characterization and properties. Chem. Rev., 104, P. 4063 (2004).

23. Di Monte R., Kaˇspar J. Nanostructured CeO2-ZrO2 mixed oxides. Catal. Today, 100, P. 27 (2005).


Review

For citations:


Sheena P.A., Priyanka K.P., Sabu N.A., Sabu B., Varghese T. Effect of calcination temperature on the structural and optical properties of nickel oxide nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(3):441-449.

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)