Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nanotubular composites: modeling of capillary filling of nanotubes of disulfide of molybdenum by molecules of TiCl4

About the Authors

A. N. Enyashin

Russian Federation


A. L. Ivanovskii

Russian Federation


References

1. Ивановский А.Л. Квантовая химия в материаловедении. Нанотубулярные формы вещества. Изд-во «Екатеринбург», Екатеринбург, 1999, 180 с.

2. Захарова Г.С., Волков В.Л., Ивановская В.В., Ивановский А.Л. Нанотрубки и родственные наноструктуры оксидов металлов Изд-во УрО РАН, Екатеринбург, 2005, 239 с.

3. Jurewicz K., Delpeux S., Bertagna V., Beguin F., Frackowiak E. Supercapacitors from nanotubes/polypyrrole composites. Chem. Phys. Lett. 2001, 347 (1-3), 36-40.

4. Gao B., Yuan C., Su L., Chen L., Zhang X. Nickel oxide coated on ultrasonically pretreated carbon nanotubes for supercapacitor. J. Solid State Electrochem. 2009, 13 (8), 1251-1257.

5. Zhu Z., Zhou Y., Yu H., Nomura T., Fugetsu B. Photodegradation of humic substances on MWCNT/nanotubularTiO2-composites. Chem. Lett. 2006, 35 (8), 890-891.

6. Harris J.P.F. Carbon Nanotube Science. Synthesis, Properties and Applications. Cambridge University Press, N.Y., 2009. 303 р.

7. Pederson M.R., Broughton J.Q. Nanocapillatiry in fullerene tubulrs. Phys. Rev. Lett.1992, 69 (18), 2689-2692.

8. Ajayan P.M., Iijima S. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361 (6410), P. 333-334.

9. Ajayan P.M., Ichihashi T., Iijima S. Distribution of pentagons and shapes in carbon nanotunes and nanoparticlrs. Chem. Phys. Lett. 1993, 202 (5), 384-388.

10. Ajayan P.M., Stephan O., Redlich P., Colliex C. Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature, 1995, 375 (6532), 564-567.

11. Tsang S.C., Chen Y.K., Harris P.J.P., Green M.L.H. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372 (6502), 159-162.

12. Sloan J., Cook J., Chu A., Zweifka-Sibley M., Green M.L.H., Hutchison JL Selective deposition of UC𝑙4 and (KCl)𝑥(UC𝑙4)𝑦 inside carbon nanotubes using eutectic and noneutectic mixtures of UC𝑙4 with KCl. J. Solid State Chem., 1999, 142 (2), 470-473.

13. Dujardin E., Ebbesen T. W., Hiura H., Tanigaki K. Capillarity and wetting of carbon nanotubes. Science, 1994, 265 (5180), 1850-1852.

14. Meyer R.R., Sloan J., Dunin-Borkowski R.E., Kirkland A. I., Novotny M.C., Bailey S.R., Hutchison J.L., Green M.L.H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science, 2000, 289 (5483), 1324-1326.

15. Sloan J., Terrones M., Nufer S., Friedrichs S., Bailey S.R., Woo H.-G., R¨uhle M., Hutchison J.L., Green M.L.H. Metastable one-dimensional AgC1−𝑥I𝑥 solid-solution wurzite ‘tunnel’ crystals formed within singlewalled carbon nanotubes. J. Am. Chem. Soc. 2002, 124 (10), 2116-2117.

16. Kiselev N.A., Zakalyukin R.M., Zhigalina O.M., Grobert M., Kumskov A.S., Grigoriev Y.V., Chernysheva M.V., Eliseev A.A., Krestinin A.V., Tretyakov Y.D., Freitag B., Hutchison J.L. The structure of 1D CuI crystals inside SWNTs. J. Microscopy, 2008, 232 (2), 335-342.

17. Flahaut E., Sloan J., Friedrichs S., Kirkland A. I., Coleman K. S., Williams V. C., Hanson N., Hutchison J. L., Green M. Crystallization of 2H and 4H PbI2 in carbon nanotubes of varying diameters and morphology. Chem. Mater. 2006, 18 (8), 2059-2069.

18. Sloan J., Grosvenor S.J., Friedrichs S., Kirkland A.I., Hutchison J.L., Green M.L.H. A one-dimensional BaI2 chain with five- and six-coordination, formed within a single-walled carbon nanotube. Angew. Chem. Int. Ed., 2002, 41 (7), 1156-1159.

19. Kitaura R., Ogawa D., Kobayashi K., Saito T., Ohahima S., Nakamura T., Yoshikwa H., Awaga K., Shinohara H. High Yield synthesis and characterization of structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates. Nano Res., 2008, 1 (2), 152-157.

20. Friedrichs S., Falke U., Green M.L.H. Phase separation of LaI3 inside single-walled carbon nanotubes. Chem. Phys. Chem., 2005, 6 (2), 300-305.

21. Tenne R., Margulis L., Genut M., Hodes G. Polyhedral and cylindrical structures of tungsten disulphide. Nature, 1992, 360 (6403), 444-446.

22. Feldman Y., Wasserman E., Srolovitz D.J., Tenne R. High-rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science, 1995, 267 (5195), 222-225.

23. Kreizman R., Hong S.Y., Sloan J., Popovitz-Biro R., Albu-Yaron A., Tobias G., Ballesteros B., Davis B.G., Green M.L.H., Tenne R. Core-shell PbI2WS2 inorganic nanotubes from capillary wetting. Angew. Chem. Int. Ed., 2009, 48 (7), 1230-1233.

24. Enyashin A.N., Kreizman R., Seifert G. Capillary imaging of PbI2 by inorganic and carbon nanotubes. J. Phys. Chem., 2009, C113 (31), 13664–13669.

25. Seifert G., Terrones H., Terrones M., Jungnickel G., Frauenheim T. Structure and Electronic Properties of MoS2 Nanotubes, Phys. Rev. Lett., 2000, 85 (1), 146-149.

26. Hacohen R.Y., Grunbaum E., Tenne R., Sloan J., Hutchison J.L. Cage structures and nanotubes of NiCl2. Nature, 1998, 395 (6700), 337-338.

27. Popovitz-Biro R., Twersky A., Rosenfeld Hacohen Y., Tenne R. Nanoparticles of CdC𝑙2 with closed cage structures, Israel J. Chem., 2001, 41 (1), 7-14.

28. Hacohen Y., Popovitz-Biro R., Prior Y., Gemming S., Seifert G., Tenne R. Synthesis of NiC𝑙2 nanotubes and fullerene-like structures by laser ablation: theoretical considerations and comparison with MoS2 nanotubes, Phys. Chem. Chem. Phys., 2003, 5 (8), 1644-1651.

29. Popovitz-Biro R., Sallacan N., Tenne R. CdI2 nanoparticles with closed-cage (fullerene-like) structures, J. Mater. Chem., 2003, 13 (7), 1631-1634.

30. Bar-Sadan M., Popovitz-Biro R., Prior Y., Tenne R. Closed-cage (fullerene-like) structures of NiBr2, Mater. Res. Bull., 2006, 41 (11), 2137-2146.

31. Kang J.W., Hwang H.J., Song K.O., Choi W.Y., Byun K.R., Kwon O.K., Lee J.H., Kim W.W. Ordered phases of cesium in carbon nanotubes, J. Korean Chem. Soc., 2003, 43 (4), 534-539.

32. Schebarchov D., Hendy S.C. Dynamics of capillary absorption of droplets by carbon nanotubes, Phys. Rev. E, 2008, 78 (4), art. 046309.

33. Bishop C.L., Wilson M. The energetics of inorganic nanotubes, Mol. Physics, 2008, 106 (12-13), 1665-1674.

34. Baldoni M., Leoni S., Sgamellotti A., Seifert G., Mercuri F. Formation, structure, and polymorphism of novel lowest-dimensional Agl nanoaggregates by encapsulation in carbon nanotubes, Small, 2007, 3 (10), 1730-1734.

35. Yang C., Zhu X., Lu X., Feng X. Molecular dynamics simulation of nucleation of KBr clusters confined within armchair single-walled carbon nanotubes, J. Mol. Structure: THEOCHEM, 2009. 896 (1-3), 6-11.

36. Brunier T.M., Drew M.G.B., Mitchell P.C.H. Molecular mechanics atudy of the interaction of thiophene with a molybdenum-disulphide catalyst. J. Chem. Soc. Faraday Trans., 1992, 88 (21), 3225-3232.

37. Faye P., Payen E., Bougeard D. Molecular mechanics study of the interaction of molybdenum disulfide layers with a gamma-alumina support in hydrotreating catalysts, J. Chem. Soc. Faraday Trans., 1996, 92 (13), 2437- 2443.

38. Washburn E.W. The Dynamics of Capillary Flow, Phys. Rev., 1921, 17, 273-283.

39. Zhmud B.V., Tiberg F., Hallstensson K.J. Dynamics of capillary rise, J. Colloid Interface Sci., 2000, 228 (2), 263-269.

40. Supple S., Quirke N. Rapid imbibition of fluids in carbon nanotubes, Phys. Rev. Lett., 2003, 90 (21), art. P. 214501.


Review

For citations:


Enyashin A.N., Ivanovskii A.L. Nanotubular composites: modeling of capillary filling of nanotubes of disulfide of molybdenum by molecules of TiCl4. Nanosystems: Physics, Chemistry, Mathematics. 2010;1(1):63-71. (In Russ.)

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)