Semiclassical analysis of tunneling through a smooth potential barrier and localized states in graphene monolayer with mass gap
Abstract
We present a semiclassical analysis of Dirac electron tunnelling in a graphene monolayer with mass gap through a smooth potential barrier in the ballistic regime. This 1D scattering problem is formulated in terms of a transfer matrix and treated in the WKB approximation. For a skew electron incidence this WKB approximation deals, in general, with four turning points. Between the first and the second, and the third and the fourth, turning points two tunnelling domains are observed. Scattering through a smooth barrier in graphene resembles scattering through a double barrier for the 1D Schrödinger operator, i.e. a Fabry-Perot resonator. The main results of the paper are WKB formulas for the entries of the barrier transfer matrix which explain the mechanism of total transmission through the barrier in a graphene monolayer with mass gap for some resonance values of energy of a skew incident electron. Moreover, we show the existence of modes localized within the barrier and exponentially decaying away from it and its behaviour depending on mass gap. There are two sets of energy eigenlevels, complex with small imaginary part and real, determined by a Bohr-Sommerfeld quantization condition, above and below the cut-off energy. It is shown that total transmission through the barrier takes place when the energy of the incident electron coincides with the real part of one of the complex energy eigenlevels. These facts were confirmed by numerical simulations performed using the finite element method (COMSOL).
Keywords
About the Authors
V. V. ZalipaevRussian Federation
St. Petersburg.
C. M. Linton
United Kingdom
Loughborough.
References
1. A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Mater. 6, 183, 2007.
2. M. I. Katsnelson. Graphene: carbon in two dimensions. Mater. Today, 10:20, 2007.
3. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2, 620, 2006.
4. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Geim, A.K., and Novoselov, K.S. The electronic properties of graphene. Rev. Mod. Phys. 81, Jan-March, 109-162, 2009.
5. C. W. J. Beenakker. Colloquium: Andreev reflection and Klein tunnelling in graphene. Rev. Mod. Phys, 80:1337, 2008.
6. A. K. Geim. Graphene: Status and prospects. Science, 324:1530, 2009.
7. N. M. R. Peres. Colloquium: The transport properties of graphene: An introduction. Rev. Mod. Phys, 82:2673, 2010.
8. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea. Gauge fields in graphene. Phys. Rep., 496:109, 2010.
9. Semenoff G.W. Condensed-matter simulation of the three-dimensional anomaly. PRL 53, 26 (1984).
10. O. Klein. Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys, 53:157-165, 1929.
11. A. Calogeracos and N. Dombey. History and physics of the Klein paradox. Contemp. Phys., 40:313, 1999.
12. N. Dombey and A. Calogeracos. Seventy years of the Klein paradox. Phys. Rep., 315:41, 1999.
13. S. V. Vonsovsky and M. S. Svirsky. The Klein paradox and the Zitterbewegung of an electron in a field with a constant scalar potential. Uspekhi Fiz. Nauk, 163(5):115, 1993.
14. R.-K. Su, G. G. Siu, and X. Chou. Barrier penetration and Klein paradox. J. Phys. A, 26:1001, 1993.
15. Cheianov, V.V., Fal’ko, V.I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys.Rev. B. 74, 041403(R), 2006.
16. Fistul, M.V., Efetov, K.B. Electromagnetic-Field-Induced Suppression of Transport through n-p Junctions in Graphene. PRL 98, 256803, 2007.
17. Silvestrov, P.G., Efetov, K.B. Quantum dots in graphene. PRL 98, 016802, 2007.
18. Datta, S., 1995 Electronic transport in mesoscopic systems, Cambridge University Press, Cambridge.
19. Mello, P. A., Kumar, N., 2004 Quantum Transport in Mesoscopic systems, Oxford University Press, New York.
20. Stockmann, H. J., 2000, Quantum Chaos. An Introduction, Cambridge University Press, Cambridge.
21. K. S. Novoselov et al.. Electric Field Effect in Atomically Thin Carbon Films. Science. 306, 666, 2004.
22. F. W. J. Olver. Asymptotics and Special Functions, Academic Press, 1974.
23. M. V. Fedoryuk. Asymptotic Analysis: Linear Ordinary Differential Equations. Springer, 1993.
24. Sonin, E.B. Effect of Klein tunneling on conductance and shot noise in ballistic graphene. Phys.Rev. B. 79, 195438, 2009.
25. Tudorovskiy, T., Reijnders, K.J.A., Katsnelson, M.I. Chiral tunneling in single-layer and bilayer graphene. Phys. Scr. T146, 014010, 17pp, 2012.
26. Pereira, J.M., Mlinar, Jr.V., Peeters, F.M., Vasilopoulos, P. Confined states and direction-dependent transmission in graphene quantum wells. Phys.Rev. B. 74, 045424, 2006.
27. V. Zalipaev, D.Maximov, C.M.Linton and F.V.Kusmartsev. Quantum states localized in a smooth potential barrier on single layer graphene. Phys. Let. A, 377, 216-221, 2012.
28. P. Markos and C Soukoulis. Wave Propagation. From electrons to photonic crystals and left-handed materials. Priceton University Press, 2008.
29. M. Abramowitz and I. Stegun, editors. Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1965. Chapter 19 on parabolic cylinder functions.
30. The Wolfram special functions site: http://functions.wolfram.com/Hypergeometrical_Functions/Parabolic_CylinderD/.
Review
For citations:
Zalipaev V.V., Linton C.M. Semiclassical analysis of tunneling through a smooth potential barrier and localized states in graphene monolayer with mass gap. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):725-746.