Weyl function for sum of operators tensor products
Abstract
The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator having the form S = A⊗IT + IA⊗T where the operator A is symmetric and the operator T is bounded and self-adjoint. The formula for the γ-field and the Weyl function corresponding the the boundary triplet ΠS is obtained in terms of the γ-field and the Weyl function corresponding to the boundary triplet ΠA.
About the Authors
A. A. BoitsevRussian Federation
49, Kronverkskiy, Saint Petersburg, 197101.
H. Neidhardt
Germany
Berlin.
I. Yu. Popov
Russian Federation
49, Kronverkskiy, Saint Petersburg, 197101.
References
1. M.S.Birman, M.Z.Solomyak. Spectral Theory of Selfadjoint Operators in Hilbert Space. Kluwer, Dordrecht (1987).
2. Konrad Schmu¨dgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht, 2012.
3. B.S.Pavlov. Operator extensions theory and explicitly solvable models. Uspekhi Mat. Nauk. 42 (6). P. 99-131 (1987); English transl in: Russ. Math. Surv. 42, P. 127-168 (1987).
4. N.Bagraev, G.Martin, B.S.Pavlov, A.Yafyasov. Landau-Zener effect for a quasi-2D periodic sandwich. Nanosystems: Phys. Chem. Math. 2 (4), P. 32-50 (2011).
5. V.Ryzhov. A general boundary value problem and its Weyl function. Opuscula Math. 27 (2), P. 305-331.
6. M. Malamud, H. Neidhardt. Sturm-liouville boundary value problems with operator potentials and unitary equivalence. J. Differ. Equations, 252 (11), P. 5875–5922 (2012).
7. V. I. Gorbachuk, M. L. Gorbachuk. Boundary value problems for operator differential equations, volume 48 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991).
8. V. A. Derkach and M. M. Malamud. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95 (1), P. 1–95 (1991).
9. M. M. Malamud. Some classes of extensions of a Hermitian operator with lacunae. Ukra¨ın. Mat. Zh. 44 (2), P. 215–233 (1992).
10. H. Baumg¨artel, M. Wollenberg. Mathematical scattering theory, volume 59 of Mathematical Textbooks and Monographs, Part II: Mathematical Monographs. Akademie-Verlag, Berlin (1983).
11. V. A. Derkach, M. M. Malamud. On the Weyl function and Hermite operators with lacunae. Dokl. Akad. Nauk SSSR, 293 (5), P. 1041–1046 (1987).
12. V. A. Derkach, M. M. Malamud. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73 (2), P. 141–242 (1995).
13. J. Berndt, M. M. Malamud, H. Ntidhardt. Scattering matrices and Weyl functions. Proc. London Math. Soc. 97 (3), P. 568–598 (2008).
14. A. N. Kochubei. On extensions of symmetric operators and symmetric binary relations. Mat. Zametki. 17, P. 41-48 (1975).
Review
For citations:
Boitsev A.A., Neidhardt H., Popov I.Yu. Weyl function for sum of operators tensor products. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):747-759.