Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Weyl function for sum of operators tensor products

Abstract

The boundary triplets approach is applied to the construction of self-adjoint extensions of the operator having the form S = AIT + IAT where the operator A is symmetric and the operator T is bounded and self-adjoint. The formula for the γ-field and the Weyl function corresponding the the boundary triplet ΠS is obtained in terms of the γ-field and the Weyl function corresponding to the boundary triplet ΠA.

About the Authors

A. A. Boitsev
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

49, Kronverkskiy, Saint Petersburg, 197101.



H. Neidhardt
Weierstrass Institute for Applied Analysis and Stochastic
Germany

Berlin.



I. Yu. Popov
Saint Petersburg National Research University of Information Technologies, Mechanics and Optics
Russian Federation

49, Kronverkskiy, Saint Petersburg, 197101.



References

1. M.S.Birman, M.Z.Solomyak. Spectral Theory of Selfadjoint Operators in Hilbert Space. Kluwer, Dordrecht (1987).

2. Konrad Schmu¨dgen. Unbounded self-adjoint operators on Hilbert space, volume 265 of Graduate Texts in Mathematics. Springer, Dordrecht, 2012.

3. B.S.Pavlov. Operator extensions theory and explicitly solvable models. Uspekhi Mat. Nauk. 42 (6). P. 99-131 (1987); English transl in: Russ. Math. Surv. 42, P. 127-168 (1987).

4. N.Bagraev, G.Martin, B.S.Pavlov, A.Yafyasov. Landau-Zener effect for a quasi-2D periodic sandwich. Nanosystems: Phys. Chem. Math. 2 (4), P. 32-50 (2011).

5. V.Ryzhov. A general boundary value problem and its Weyl function. Opuscula Math. 27 (2), P. 305-331.

6. M. Malamud, H. Neidhardt. Sturm-liouville boundary value problems with operator potentials and unitary equivalence. J. Differ. Equations, 252 (11), P. 5875–5922 (2012).

7. V. I. Gorbachuk, M. L. Gorbachuk. Boundary value problems for operator differential equations, volume 48 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991).

8. V. A. Derkach and M. M. Malamud. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95 (1), P. 1–95 (1991).

9. M. M. Malamud. Some classes of extensions of a Hermitian operator with lacunae. Ukra¨ın. Mat. Zh. 44 (2), P. 215–233 (1992).

10. H. Baumg¨artel, M. Wollenberg. Mathematical scattering theory, volume 59 of Mathematical Textbooks and Monographs, Part II: Mathematical Monographs. Akademie-Verlag, Berlin (1983).

11. V. A. Derkach, M. M. Malamud. On the Weyl function and Hermite operators with lacunae. Dokl. Akad. Nauk SSSR, 293 (5), P. 1041–1046 (1987).

12. V. A. Derkach, M. M. Malamud. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 73 (2), P. 141–242 (1995).

13. J. Berndt, M. M. Malamud, H. Ntidhardt. Scattering matrices and Weyl functions. Proc. London Math. Soc. 97 (3), P. 568–598 (2008).

14. A. N. Kochubei. On extensions of symmetric operators and symmetric binary relations. Mat. Zametki. 17, P. 41-48 (1975).


Review

For citations:


Boitsev A.A., Neidhardt H., Popov I.Yu. Weyl function for sum of operators tensor products. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):747-759.

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)