Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of the elimination of the barrier layer period in productive process and its simulation of absorption spectra for anodic alumina membrane

Abstract

   An anodic alumina membrane is produced in two levels by performing the anodization process in various type of acidic electrolyte. Holes are characterized by hexagonal structure of varying diameters (from 40 to 420 nm). The heat and chemical stability as well as the regularity of the formed holes make the membranes appropriate for use in gas separating process, drug delivery and for fuel cell membrane applications. Detachment of the membrane from the aluminum base is the most important step in the membrane production process. In this research, initially, the synthesis of the aluminum based layer omitted the use of CuSO4 and HCl. In the second step, the barrier layer at the end of the holes was removed via treatment with an aqueous phosphoric acid solution. The aim of this work is to analyze the effect of time upon the barrier layer removal process and, assuming that we have added gold to the alumina membrane, i.e. the alumina membrane has its empty pores filled with gold, simulations were done in order investigate its absorption spectra. Simulations were done using the FDTD method for all structures evaluated. The values for the structures’ absorption and their spectra were calculated and plotted. In the case when the aluminum membrane pores are filled with gold, the curve of gold absorption spectrum has the highest absorption, so in practical terms, this means that making this membrane can have different applications.

About the Authors

M. R. Mohebbifar
Kazan Federal University
Russian Federation

Institute of Physics; Optics and Nanophotonics Department

Kazan



M. Ahmadi Daryakenari
Kazan National Research Technological University
Russian Federation

Kazan



G. Mosallanezhad
University of Sistan and Baluchestan
Islamic Republic of Iran

Faculty of Electrical and Computer Engineering

Zahedan



M. Zohrabi
Kazan Federal University
Russian Federation

Institute of Physics; Optics and Nanophotonics Department

Kazan



References

1. F. Reidenbach, Surface Engineering, ASM International, Ohio, 124 p. (2007).

2. K. Itaya, S. Sugawara, K. Arai, and S. Saito. Properties of porous anodic aluminum oxide films as membrances. Journal of Chemical Engineering of Japan, 17(6), P. 514–520 (1984).

3. H. Masuda, K. Yada and A. Osaka. Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution. Japanese Journal of Applied Physics, 37(11A), P. 212–219 (1998).

4. F. Keller, M.S. Hunter, D.L. Robinson, Structural Features of Oxide Coatings on Aluminum, The Electrochemical Society, 1953, 100 (9), 411-419.

5. D. Crouse, Y.H. Lo, A.E. Miller, M. Crouse. Self-ordered pore structure of anodized aluminum on silicon and pattern transfer. Appl. Phys. Lett., 76(1), P. 49–51 (2000).

6. D.Qin , M.Lu , H.Li. Magnetic force microscopy of magnetic domain structure in highly ordered Co nanowire arrays. Chem. Phys. Lett., 350(10), P. 51–56 (2001).

7. T. Imai, S. Nomura. Quantum dot arrays prepared with self-organized nanopore and its photoluminescence spectra. Physica E: Low-dimensional Systems and Nanostructures, 21(2), P. 1093–1097 (2004).

8. M. Steinhart, R.B. Wehrspohn,U. Gosele, J. Wendorff. Nanotubes by Template Wetting: A Modular Assembly System. Chem. Int. Ed., 43(9), P. 1334–1344 (2004).

9. J. Justin Gooding. Nanostructuring electrodes with carbon nanotubes : A review on electrochemistry and applications for sensing. Electrochim. Acta., 50(15), P. 3049–3060 (2005).

10. D. Gong, V. Yadavalli, M. Paulose, M. Pishko, C. Grimes. Controlled molecular release using nanoporous alumina, Biomed. Microdevices., 5(1), P. 75–80 (2003).

11. M. Darder, P. Aranda, M. Hern´andez-V´elez, E. Manova, E. Ruiz-Hitzky. Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films., 495(8), P. 321–326 (2005).

12. P. Bocchetta, R. Ferraro, F. Di Quarto. Advances in anodic alumina membranes thin film fuel cell: CsH<sub>2</sub>PO<sub>4</sub> pore-filler as proton conductor at room temperature. Power Sources., 187(11), P. 49–56 (2009).

13. M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters., 363(3), P. 123–128 (2002).

14. W. Lee, R. Ji, U. Gosele, K. Nielsch. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials, 5(6), P. 741–747 (2006).

15. I. Vrubevsky, V. Parkoun, J. Schreckenbach, G. Marx. Study of porous oxide film growth on aluminum in oxalic acid using a re-anodizing technique. Applied Surface Science, 227(4), P. 282–292 (2004).

16. H. Masuda, K. Yasui, Nishio. Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask. Advanced Materials., 12(14), P. 1031–1033 (2000).

17. J. Liang, H. Chik, A. Yin, J.J. Xu. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. Appl. Phys., 91(12), P. 2544–2553 (2002).

18. X. Mei, D. Kim, H. E. Ruda, Q. X. Guo. Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al<sub>2</sub>O<sub>3</sub> nanohole array template masks. Appl. Phys. Lett., 81(11), P. 361–363 (2002).

19. T. Xu, G. Zangari, R. M. Metzger. Periodic Holes with 10 nm Diameter Produced by Grazing Ar+ Milling of the Barrier Layer in Hexagonally Ordered Nanoporous Alumina. Nano Lett., 2(1), P. 37–41 (2002).

20. H. Masuda and M. Satoh. Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask. J. Appl. Phys., 35(1), P. 126–129 (1996).

21. Catherine Y. Han, Gerold A. Willing, Zhili Xiao, and H. Hau Wang. Control of the Anodic Aluminum Oxide Barrier Layer Opening Process by Wet Chemical Etching. Langmuir, 23(3), P. 1564–1568 (2007).

22. T.T. Xu, R. Piner and R.S.Ruoff. An Improved Method to Strip Aluminum from Porous Anodic Alumina Films. Langmuir, 19(5) P. 1443–1449 (2003).

23. H. Masuda, A. Abe, M. Nakao, A. Yokoo, T. Tamamura, K. Nishio, Ordered Mosaic Nanocomposites in Anodic Porous Alumina. AdV. Mater., 15(2), P. 161–164 (2003).

24. J. P. O’Sullivan and G. C. Wood. Proc. R. Soc. London, Ser. A. 317(2), P. 511–519 (1970).

25. G. E. Thompson, and G. C. Wood. Porous anodic film formation on aluminium. Nature, 290(9), P. 230–232 (1981).

26. Mickael Lillo, Dusan Losic. Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology. Journal of Membrane Science. 237(1), P. 11–17 (2008).

27. C. Y. Han, G. A. Willing, Z. L. Xiao, H. H. Wang. Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching. Langmuir, 23(3), P. 1564–1568 (2007).

28. J. J. Schneider, N. Engstler, K. P. Budna, C. Teichert, S. Franzka, Freestanding, highly flexible, large area, “nanoporous alumina membranes with complete through-hole pore morphology”. European Journal of Inorganic Chemistry, 2005(12), P. 2352–2359 (2005).

29. Zhou Z-K et al. Tuning gold nanorod-nanoparticle hybrids into plasmonic fano resonance for dramatically enhanced light emission and transmission. Nano Lett., 11(1), P. 49–55 (2011).


Review

For citations:


Mohebbifar M.R., Ahmadi Daryakenari M., Mosallanezhad G., Zohrabi M. Effect of the elimination of the barrier layer period in productive process and its simulation of absorption spectra for anodic alumina membrane. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):737-751.

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)