X-ray luminescence of BaF2:Ce3+ powders
Аннотация
We studied the mechanism for the formation of cerium-activated barium fluoride scintillation ceramics and especially X-ray luminescence of its powdered precursors, prepared by co-precipitation of barium and cerium fluorides from aqueous solutions. We have found that the Ce3+ luminescence, which is typical for cerium (III)-containing ceramics and single crystals, was not observed for such polycrystalline precursors, and the intensity of barium fluoride’s own luminescence decreases with increasing amounts of the cerium dopant in the specimens. We have interpreted our results as two-phase precipitation of barium hydrofluoride (BaF2·HF) and cerium fluoride, respectively. Cerium (III) became incorporated in fluorite-type barium fluoride lattice only later, in the course of ceramics synthesis by the hot-pressing technique.
Об авторах
S. Kh. BatygovРоссия
A. M. Prokhorov General Physics Institute
Moscow
M. N. Mayakova
Россия
A. M. Prokhorov General Physics Institute
Moscow
S. V. Kuznetsov
Россия
A. M. Prokhorov General Physics Institute
Moscow
P. P. Fedorov
Россия
A. M. Prokhorov General Physics Institute
Moscow
Список литературы
1. F.K. Volynets. Fabrication, structure, and physico-chemical properties of optical ceramics. Opt. Mekh. Prom., 9, P. 48–60 (1973) (in Russian).
2. P.P. Fedorov. Fluoride laser ceramics. In: Handbook on solid-state lasers: materials, systems and applications. Ed. by B. Denker and E. Shklovsky. Oxford Cambridge Philadelphia New Delhi, Woodhead Publishing Limited, UK, P. 82–109 (2013).
3. P.P. Fedorov, S.V. Kuznetsov, et al. Microstructure and scintillation characteristics of BaF<sub>2</sub> ceramics. Inorganic Materials, 50 (7), P. 738–744 (2014).
4. P. Schotanus, P. Dorenbos, C.W.E. van Eijk, R.W. Hollander. Recent development in scintillator research. IEEE Trans. Nucl. Sci., 36 (1), P. 132–136 (1989).
5. M. Laval, M. Moszynaki, R. Allemand. Barium fluoride-inorganic scintillator for subnanosecond timing. Nucl. Instrum. Methods, 206 (1), P. 169–176 (1983).
6. P.A. Rodnyi. Core-valence transitions in wide-band-gap ionic crystals. Phys. Solid State, 34 (7), P. 1975–1998 (1992).
7. B.P. Sobolev. Multicomponent crystals based on heavy metal fluorides for radiation detectors. Barcelona: Inst. d’Estudis Catalans (1994).
8. D.M. Seliverstov, A.A. Demidenko, et al. New fast scintillators on the base of BaF<sub>2</sub> crystals with increased light yield of 0.9 ns luminescence for TOF PET. Nuclear Instruments and Methods in Physics Research A, 695, P. 369–372 (2012).
9. P. Schotanus, P. Dorenbos, C.W.E. van Eijk, and R.W. Hollander. Recent development in scintillator research. IEEE Trans. Nucl. Sci., 36 (1), P. 132–136 (1989).
10. A.J. Wojtowicz, P. Szupryczynski, et al., Radioluminescence and recombination processes in BaF<sub>2</sub>:Ce. J. Phys.: Condens. Matter, 12, P. 4097–4124 (2000).
11. Kh.S. Batygov, L.S. Bolyasnikova, et al. BaF<sub>2</sub>:Ce<sup>3+</sup> scintillation ceramics. Doklady Physics, 53 (9), P. 485–488 (2008).
12. P.A. Rodnyi, S.D. Gain, et al. Spectral-kinetic characteristics of crystals and nanoceramics based on BaF<sub>2</sub> and BaF<sub>2</sub>:Ce. Phys. Solid State, 52 (9), P. 1910–1914 (2010).
13. A.A. Luginina, P.P. Fedorov, et al. Synthesis of BaF<sub>2</sub>·HF and BaF<sub>2</sub> from nitric solutions. Nanosystems: Physics, Chemistry, Mathematics, 3 (5), P. 125–137 (2012) (in Russsian).
14. A.A. Luginina, A.E. Baranchikov, A.I. Popov, P.P. Fedorov. Preparation of barium monohydrofluoride BaF<sub>2</sub>·HF from nitrate aqueous solutions. Mater. Res. Bull., 49 (1), P. 199–205 (2014).
15. P.P. Fedorov, M.N. Mayakova, et al. Co-Precipitation of Yttrium and Barium Fluorides from Aqueous Solutions. Mater. Res. Bull., 47, P. 1794–1799 (2012).
Рецензия
Для цитирования:
Batygov S.Kh., Mayakova M.N., Kuznetsov S.V., Fedorov P.P. X-ray luminescence of BaF2:Ce3+ powders. Наносистемы: физика, химия, математика. 2014;5(6):752-756.
For citation:
Batygov S.Kh., Mayakova M.N., Kuznetsov S.V., Fedorov P.P. X-ray luminescence of BaF2:Ce3+ powders. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):752-756.