Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Dielectric relaxation of fulleroid materials filled PA6 composites and the study of its mechanical performance

https://doi.org/10.17586/2220-8054-2015-6-4-570-582

Abstract

The effect of fulleroid materials (fullerene C60 and fullerene soot which is used for fullerenes production) on the mechanical properties of polymer nanocomposites based on polyamide 6 (PA6) was investigated. Composites were synthesized by direct mixing in an extruder. Dielectric spectroscopy was used to investigate the influence of nanoparticles on relaxation processes in the polymer matrix. It is found that the segmental relaxation processes becomes faster with the addition of fullerene C60. In contrast, the secondary processes of PA6/fullerene C60 nanocomposites were observed to slow down with the addition of fullerene C60. This means that the local ‘molecular stiffness’ is increased, and a phenomenological link between the secondary relaxation times and the mechanical properties explains the increase in the Young’s modulus of the nanocomposites upon the addition of C60. These observations suggest that nanoparticles can have a qualitatively different effect on the matrix polymer dynamics at different length scales, and caution must be taken in comparing the changes in the dynamics associated with different relaxation processes.

About the Authors

A. N. Sinitsin
ITMO University
Russian Federation

Kronverkskiy pr., 49, 197101 St. Petersburg



V. V. Zuev
ITMO University; Institute of Macromolecular Compounds of the Russian Academy of Sciences
Russian Federation

Kronverkskiy pr., 49, 197101 St. Petersburg

Bolshoi pr. 31, 199004 St. Petersburg



References

1. Bijwe J., Logani C.M., Tewari U.S. Influence of fillers and fiber reinforcement on abrasive wear resistance of some polymeric composites. Wear, 1990, 138, P. 77–92.

2. Treacy M.M.J., Ebesen T.W., Gibson J.M. Nanoparticles as reinforced agents. Nature, 1996, 381, P. 678–680.

3. Strobl G. The Physics of Polymers. Springer, Berlin, 2007, 450 p.

4. Prato M. 60 Fullerene chemistry for material science applications. J. Mater. Chem., 1997, 7, P. 1097–1109.

5. Schaefer D.W., Justice R.S. How nano are nanocomposites. Macromolecules, 2007, 40, P. 8501–8517.

6. Spitalsky Z., Tasis D., Papagelis K., Galiotis K. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci., 2010, 35, P. 357–401.

7. Adachi K,, Kotaka T. Dielectric normal mode relaxation. Progr. Polym. Sci., 1993, 18, P. 585–622.

8. Zuev V.V., Ivanova Y.G. Mechanical and electrical properties of polyamide-6 based nanocomposites reinforced by fulleroid fillers. Polym. Eng. Sci., 2012, 52, P. 1206–1211.

9. Kawauchi M., Kawauchi T., Takeichi T. Solubilization of 60Fullerene Owing to Inclusion Complex Formation between Syndiotactic Poly(methyl methacrylate) and the Fullerenes in Polar Solvents. Macromolecules, 2009, 42, P. 6136–6142.

10. Zuev V.V., Shlikov A.V. Polyamide 12/ fullerene C60 composites: investigation on their mechanical and dielectric properties. J. Polym. Research, 2012, 19, P. 1–6 (9925).

11. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006, 39, P. 5194–5205.

12. Russo P., Acierno D., Di Maio L., Demma G. Thermal and mechanical characterization of films from nylon 6/EVOH blends. Eur. Polym. J., 1999, 35 (7), P. 1261–1268.

13. Naffakh M., Diaz-Pascual A.M., et al. Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Prog. Polym. Sci., 2013, 38, P. 1163–1231.

14. Goitisolo I., Eguiazabal J.I., Nazabal J. Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polym. Deg. Stab., 2008, 93, P. 1747–1752.

15. Lincoln D.M., Vaia R.A., Wang Z.-G., Hsiao B.S. Secondary structure and elevated temperature crystallite morphology of nylon-6/ layered silicate nanocomposites. Polymer, 2001, 42, P. 1621–1629.

16. Liu H., Brinson L.C. Reinforcing efficiency of nanoparticles: a simple comparison for nanocomposites. Compos. Sci. Tech., 2008, 68, P. 1502–1512.

17. Liu T., Phang I.Y., et al. Morphology and mechanical properties of multywalled carbon nanotubes reinforced nylon-6 composites. Macromolecules, 2004, 37, P. 7214–7222.

18. Wu T.M., Liao C.S. Polymorphism in nylon 6/clay nanocomposites. Macromo. Chem. Phys., 2000, 201, P. 2820–25.

19. Ito M., Mituochi K., Kanamoto T. Effects of crystalline forms on the deformation behaviour of nylon-6. Polymer, 1998, 39, P. 4593–4598.

20. Mesbah A., Zari F., et al. Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework. J. Appl. Polym. Sci., 2009, 114, P. 3274–91.

21. Avakian P., Matheson R.R., Starkweather H.W. Implications of dielectric response for the mechanism of changes in oxygen transport due to traces of moisture in amorphous nylons. Macromolecules, 1991, 24, P. 4698–4700.

22. Laredo E., Grimau M., Sanchez F., Bello A. Water Absorption Effect on the Dynamic Properties of Nylon-6 by Dielectric Spectroscopy. Macromolecules, 2003, 36, P. 9840–9850.

23. Laredo E., Hernandez M.C. Moisture effect on the low- and high-temperature dielectric relaxations in nylon-6. J. Polym. Sci. B, 1997, 35, P. 2879–2888.

24. Frank B., Frubing P., Pissis P. Water sorption and thermally stimulated depolarization currents in nylon-6. J. Polym. Sci. B, 1996, 34, P. 1853–1860.

25. Havriliak S., Negami S.. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. C, 1966, 14, P. 99–117.

26. Havriliak S., Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 1967, 8, P. 161–210.

27. Allegra G., Raos G., Vacatello M. Theories and simulations of polymer based nanocomposites: from chain statistics to reinforcement. Prog. Polym. Sci., 2008, 33, P. 683–731.

28. Reynaud E., Jouen T., et al. Nanofillers in polymeric matrix: astudy on silica reinforced PA6. Polymer, 2001, 42, P. 8759–8768.

29. P. Ramasundaram S., Kim K.J. In-situ synthesis and characterization of polyamide 6/POSS nanocomposites. Macromol. Symp., 2007, 249–250, P. 295–302.

30. Kremer F., Schonhals A. Broadband dielectric spectroscopy. Springer, New York, 2003, 430 p.

31. Angell C.A., Ngai K.L., et al. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys., 2000, 88, P. 3113.

32. Pikhurov D.V., Zuev V.V. The effect of fullerene C60 on the mechanical and dielectric behaviour of epoxy resins at low loading. Nanosystems: Phys., Chem., Math., 2013, 4 (6), P. 834–843.

33. Wang C., Guo Z.-X. et al. Polymers containing fullerene or carbon nanotube structures. Prog. Polym. Sci., 2004, 29, P. 1079–1141.

34. Zuev V.V. Polymer nanocomposites containing fullerene C60 nanofillers. Macromol. Symp., 2011, 301, P. 157–161.


Review

For citations:


Sinitsin A.N., Zuev V.V. Dielectric relaxation of fulleroid materials filled PA6 composites and the study of its mechanical performance. Nanosystems: Physics, Chemistry, Mathematics. 2015;6(4):570-582. https://doi.org/10.17586/2220-8054-2015-6-4-570-582

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)