Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nanodisperse oxide compounds of iron formed in the FeSO4 – KOH – H2O – H2O2 system (4.0 ≤ pH ≤ 13.0)

https://doi.org/10.17586/2220-8054-2015-6-4-593-604

Abstract

The regularities of phase formation during oxidation of aqueous solutions of FeSO4 and (or) suspensions of Fe(OH)2 at quasi-constant temperature and pH values have been studied for wide intervals of temperature (20 – 85 ◦C) and (4.0 – 13.0) of the reaction medium. The produced nanodisperse materials have been examined by X-ray phase analysis, IR spectroscopy, scanning electron microscopy and X-ray fluorescence analysis, as well as by thermogravimetric analysis combined with thermal analysis and mass spectrometric analysis of released gases. The dependences of the phase, chemical and disperse compositions of the formed precipitates on the synthesis parameters have been revealed.

About the Authors

D. A. Zherebtsov
South Ural State University (National research university)
Russian Federation

Chelyabinsk



V. Sh. Mirasov
South Ural State University (National research university)
Russian Federation

Chelyabinsk



D. G. Kleschev
South Ural State University (National research university)
Russian Federation

Chelyabinsk



E. V. Polyakov
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Ekaterinburg



References

1. Bharat B. Handbook of Nanotechnology. Springer-Verlag Heidelberg, Berlin, 2010, 1961 p.

2. Cornell R.M. Schwertmann U. The iron oxides. Structure, properties, reactions, occurrences and uses. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, 694 p.

3. Kleschev D.G., Sheinkman .I., Pletnev R.N. The effect of medium on the phase and chemical transformations in disperse systems. UrO AN SSSR, Sverdlovsk, 1990, 248 p. in Russian

4. Polyakov E.V., Krasilnikov V.N., et al. Synthesis and photocatalytic activity of quasi-one-dimensional (1-D) solid solutions Ti1−xMxO2−2x/2 (M(III)= Fe(III), Ce(III), Er(III), Tb(III), Eu(III), Nd(III and Sm(III), 0 ≤ x ≤ 0.1)). Nanosystems: physics, chemistry, mathematics, 2014, 5 (4), P. 553–563.

5. Mallikarjuna N.N., Manohar S.K., et al. Novel high dielectric constant nanocomposites of polyaniline dispersed with γ-Fe2O3 nanoparticles. J. Appl. Polym. Sci., 2005, 97 (5), P. 1868–1874.

6. Feitknecht W. Uber die Oxydation von festen Hydroxyverbindungen des Eisens in wabbrigen Losungen. Zs. Elektrochem, 1959, 63 (1), P. 34–43.

7. Kijama M. Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions. Bull. Chem. Soc. Japan., 1974, 47 (7), P. 1646–1650.

8. Misawa T., Hashimoto K., Shimodaria S. The mechanism of formation of iron oxides and oxihydroxides in aqueous solutions at room temperatures. Crrsion Sci., 1974, 4 (2), P. 131–149.

9. Datta N.C. Chemistry of iron(III) oxides and oxyhydroxide. J. Sci. Industr. Res., 1981, 40 (9), P. 571–583.

10. Kijama M., Takada T. Iron compounds formed by the aerial oxidation of ferrous salt solutions. Bull. Chem. Soc. Japan., 1972, 45 (10), P. 1923–1924.

11. Tolchev A.V., Kleschev D.G., Bagautdinova R.R., Pervushin V.Yu. Temperature and pH effect on composition precipitate formed in FeSO4 – H2O – H+/OH− – H2O2 system. Mat. Chem. Phys., 2002, 74 (1), P. 336–339.

12. Inouye K. What is Iron Oxyhydroxide. Kagaku to Kogyo, 1974, 27 (8), P. 571–578.

13. Weckler B., Lutz H.D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganeite (β), lepidocrocite (γ), and feroxyhite (δ). Eur. J. Solid State Inorg. Chem., 1998, 35 (8–9), P. 531–544.

14. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Sixth edition. WILEY: A John Wiley & Sons, Inc., Publication. Hoboken, New Jersey. 2009, 427 p.

15. Weckler B., Lutz H.D. IR spectroscopic studies on iron oxide hydroxides. Eur. J. Solid state Inorg. Chem., 1998, 35, P. 531–544.

16. Sidhu P.S. Transformation of trace element-substituted maghemite to hematite. Clays and Clay Minerals, 1988, 36 (1), P. 31–38.

17. Koga N., Takamoto Sh., Okada S., Tanaka H. A kinetic study of the thermal decomposition of iron(III) hydroxide oxides. Part 1. α-FeOOH in banded iron formatins. Thermochimica Acta, 1995, 254 (1), P. 193– 206.

18. Kleshcheva R.R., Kleshchev D.G., et al. The effect of synthesis parameters on the phase formation in the system FeSO4 – H2O – H+/OH− – O2 (3.5≤pH ≤13). Russian Journal of Applied Chemistry, 2003, 76 (9), P. 1379–1383.

19. Gallagher K.S., Feitknecht W., Mannweiler U. Mechanism of oxidation of magnetite to γ-Fe2O3. Nature, 1968, 127 (5134), P. 1118–1121.

20. Adamson A.W., Gast A.P. Physical chemistry of surface. Sixth edition. A WILEY-INTERSCIENCE PUBLICATION: A John Wiley & Sons, Inc. 1997, 804 p.

21. Bernal J.D., Dasgypta D.R., Mackay A.S. The oxides and hydroxides of iron and their structural interrelationships. Clay miner. Bull., 1959, 4 (2), P. 131–149.


Review

For citations:


Zherebtsov D.A., Mirasov V.Sh., Kleschev D.G., Polyakov E.V. Nanodisperse oxide compounds of iron formed in the FeSO4 – KOH – H2O – H2O2 system (4.0 ≤ pH ≤ 13.0). Nanosystems: Physics, Chemistry, Mathematics. 2015;6(4):593-604. https://doi.org/10.17586/2220-8054-2015-6-4-593-604

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)