Navigation on the energy surface of the noncollinear Alexander-Anderson model
Abstract
Implementation of the multiple impurity, noncollinear Alexander-Anderson model is described in detail and an analytical expression given for the force which determines the orientation of the magnetic momenta as well as a corresponding magnetic force theorem. Applications to trimers of Cr, Mn and Fe adsorbed on a metal surface are described, including the energy surface as a function of the the angles specifying the orientation of the magnetic momenta and minimum energy paths for transitions between stable states, which necessarily involve noncollinear ordering. A simple model for the interaction of a magnetic STM tip with a Cr dimer on a surface is briefly described. A finite range approximation is also formulated, which simplifies the self-consistency calculations and results in linear scaling of the computational effort with the number of magnetic atoms in the system. The theoretical approach described here can be used to study magnetic systems with complex energy landscapes, including stable states and magnetic transitions in frustrated magnetic systems, over a range in length scale, from a few to several thousands of magnetic atoms.
Keywords
About the Authors
P. F. BessarabSweden
Stockholm; St. Petersburg
A. Skorodumov
Russian Federation
St. Petersburg
V. M. Uzdin
Russian Federation
St. Petersburg
H. J´onsson
Iceland
Reykjav´ık; Finland; Espoo
References
1. R. Wiesendanger. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys., 81, 1495 (2009).
2. S. Heinze, K. von Bergmann, et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713 (2011).
3. M. Bode, O. Pietzsch, et al. Experimental Evidence for Intra-Atomic Noncollinear Magnetism at Thin Film Probe Tips. Phys. Rev. Lett. 86, 2142 (2001).
4. P.F. Bessarab, V.M. Uzdin, H. J´onsson. Harmonic transition state theory of thermal spin transitions. Phys. Rev. B 85, 184409 (2012).
5. H.B. Braun. Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons. Advances in Physics 61, 1 (2012).
6. P.F. Bessarab, V.M. Uzdin, H. J´onsson. Size and shape dependence of thermal spin transitions in nanoislands. Phys. Rev. Lett. 110, 020604 (2013).
7. P.F. Bessarab, V.M. Uzdin, H. J´onsson. Potential Energy Surfaces and Rates of Spin Transitions. Z. Phys. Chem. 227, 1543 (2013).
8. T. Oda, A. Pasquarello, R. Car. Fully Unconstrained Approach to Noncollinear Magnetism: Application to Small Fe Clusters. Phys. Rev. Lett. 80, 3622 (1998).
9. O. Ivanov, V.P. Antropov. Molecular magnetism: Noncollinear ordering and spin dynamics. J. Appl. Phys. 85, 4821 (1999).
10. L. Nordstr¨om, D.J. Singh. Noncollinear intra-atomic magnetism. Phys. Rev. Lett. 76, 4420 (1996).
11. V.P. Antropov, M.I. Katsnelson, et al. Spin dynamics in magnets: equation of motion and finite temperature effects. Phys. Rev. B 54, 1019-1035 (1996).
12. L.M. Small, V. Heine. A couple method for calculating interatomic interactions in itinerant electron magnetic systems. J. Phys. F 14, 3041 (1986).
13. G. Bihlmayer, ‘Density-functional theory of magnetism’, in ‘Handbook of magnetism and advanced magnetic materials’, ed. H. Kronm¨uller, S. Parkin. Vol. 1, page 3.
14. L.M. Sandratskii. Noncollinear magnetism in itinerant-electron systems: Theory and applications. Advances in Physics 47, 91 (1998).
15. G.M. Stocks , B. Ujfalussy, et al. Towards a constrained local moment model for first principles spin dynamics. Philos. Mag. B 78, 665 (1998).
16. S. Lounis, P.H. Dederichs. Mapping the magnetic exchange interactions from first principles: Anisotropy anomaly and application to Fe, Ni, and Co. Phys. Rev. B 82, 180404(R) (2010).
17. P.W. Anderson. Localized Magnetic States in Metals. Phys. Rev. 124, 41 (1961).
18. S. Alexander, P.W. Anderson. Interaction between localized states in metals. Phys. Rev. 133, A1594 (1964).
19. R. Haydock, V. Heine, M.J. Kelly. Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C: Solid State Phys. 5, 2845 (1972).
20. R. Haydock, V. Heine, M.J. Kelly. Electronic structure based on the local atomic environment for tight-binding bands: II. J. Phys. C: Solid State Phys. 8, 2591 (1975).
21. V.M. Uzdin, N.S. Yartseva. Periodic Anderson model for the description of noncollinear magnetic structure in low-dimensional 3d-systems. Comput. Mater. Sci. 10, 211 (1998).
22. S.V. Uzdin. On the calculation of the magnetic structure of surfaces, near surface layers, and interfaces of 3d metals. Physics of the Solid State 51, 1260 (2009).
23. P.F. Bessarab, V.M. Uzdin, H. J´onsson. Calculations of magnetic states and minimum energy paths of transitions using a noncollinear extension of the Alexander-Anderson model and a magnetic force theorem. Phys. Rev. B 89, 214424 (2014).
24. S. Uzdin, V. Uzdin, C. Demangeat. Magnetic trimer on non-magnetic substrate: from frustration towards non-collinearity. Europhys. Lett. 47, 556 (1999).
25. S. Uzdin, V. Uzdin, C. Demangeat. Non-collinear structure of Cr trimer on the surface of non-magnetic metals. Comput. Mater. Sci. 17, 441 (2000).
26. S. Uzdin, V. Uzdin, C. Demangeat. Non-collinear magnetism of Cr, Mn and Fe trimers supported on the non-magnetic metal surface. Surf. Sci. 482, 965 (2001).
27. H.J. Gotsis, N. Kioussis, D.A. Papaconstantopoulos. Evolution of magnetism of Cr nanoclusters on Au(111): First-principles electronic structure calculations. Phys. Rev. B 73, 014436 (2006).
28. A. Bergman, L. Nordstr¨om, et al. Magnetic interactions of Mn clusters supported on Cu. Phys. Rev. B 73, 174434 (2006).
29. K. Hirai. Electronic Structure of Helical Spin Density Wave State in fcc Iron. J. Phys. Soc. of Jpn. 61, 2491 (1992).
30. S. Lounis, P. Mavropoulos, P.H. Dederichs, S. Bl¨ugel. Noncollinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni (001). Phys. Rev. B 72, 224437 (2005).
31. R. Robles, L. Nordstr¨om. Noncollinear magnetism of Cr clusters on Fe surfaces. Phys. Rev. B 74, 094403 (2006).
32. H. J´onsson, G. Mills, K.W. Jacobsen. In Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D. F. Coker (World Scientific, Singapore, 1998), p. 385.
33. G. Henkelman, H. J´onsson. ‘Improved Tangent Estimate in the NEB Method for Finding Minimum Energy Paths and Saddle Points’. J. Chem. Phys. 113, 9978 (2000).
34. R. Schmidt, A. Schwarz, R. Wiesendanger. Ground State of Magnetic Dimers on Metal Surfaces. Phys. Rev. B 86 174402 (2012).
35. A.T. Costa, R.B. Muniz, et al. Magnetism of an Fe monolayer on W(110). Phys. Rev. B 78 054439 (2008).
Review
For citations:
Bessarab P.F., Skorodumov A., Uzdin V.M., J´onsson H. Navigation on the energy surface of the noncollinear Alexander-Anderson model. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):757-781.