Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Resonance one-body scattering on a junction

Abstract

In this paper we propose a synthesis of various approaches mixing computational modeling, solving complex and sometimes ill-posed inverse problems and the development of efficient analytic perturbation procedures, which offer an analytic path to the solution of the mathematical design and optimization problems for constructing quantum networks with prescribed transport properties. We consider the simplest sort of 2𝐷 quantum networks — the junctions — and focus on the problems of the resonance scattering, caused by the spectral properties of the relevant Schrodinger operator on the vertex domain. Typically, ¨ 1-D features appear in the form of the single-mode scattering on the first spectral (energy) band in the resulting solvable model, but the analysis of multi-mode scattering is possible with our methodology. However, this comes at the price of assuming realistic (as opposed to quite general) matching between the scattering Ansatz in the wires and the solution of the Schrodinger equation on the vertex ¨ domain. Here this matching is based on a recently developed version of the Dirichlet-to-Neumann map. We are further able to observe the transformation of the discrete spectrum of the Schrodinger operator on the vertex domain ¨ into the resonance features of the relevant scattering problem. 

About the Authors

G. Martin
NZ institute for Advanced study, Massey University
New Zealand

Auckland



A. M. Yafyasov
V. Fock Institute for Physics at the St. Petersbourg University
Russian Federation


B. S. Pavlov
NZ institute for Advanced study, Massey University; V. Fock Institute for Physics at the St. Petersbourg University
Russian Federation


References

1. C. Presilla, J. Sjostrand Transport properties in resonance tunnelling heterostructures In: J. Math. Phys. 37, 10 (1996), pp 4816-4844.

2. J. Br ¨uning, G. Martin, B. Pavlov Calculation of the Kirchhoff Coefficients for the Helmholtz Resonator. In: Russian Journal of Mathematical physics, 16 (2) Pleiades Publishing Ltd. (2009) pp. 188-207.

3. M. Harmer. Hermitian symplectic geometry and extension theory. Journal of Physics A: Mathematical and General, 33 (2000) pp 9193–9203.

4. M. Harmer Fitting parameters for a Solvable Model of a Quantum Network The University of Auckland, Department of Mathematics report series 514 (2004), 8 p.

5. P. Kuchment, H. Zeng Convergence of Spectra of mesoscopic Systems Collapsing onto Graph Journal of Mathematical Analysis and Applications, 258(2001) pp 671-700.

6. P. Kuchment Graph models for waves in thin structures Waves in Periodic and Random Media, 12,1 (2002) R 1 - R 24

7. P.Exner, O.Post Convergence of graph-like thin manifolds J. Geom. Phys. 54,1, (2005) pp 77-115.

8. D. Grieser Spectra of graph neighborhoods and scattering. Proc. Lond. Math. Soc. (3) 97 (2008), no. 3, 718–752. 35P25 (47A40 47A55 58J50)

9. Y. Colin de Verdiere, Y.: ` Pseudo-Laplacians II Ann. Inst. Fourier 33 (1983) pp 87-113.

10. H. Donnely Eigenvalue estimates for certain noncompact manifolds Mich. Math. J. 31 (1984) pp 349-357.

11. W. M ¨uller Manifolds with cusps of rank one Lect. Notes in Math., 1244 Springer-Verlag (1987)

12. L. Guillope,´ Th´eorie spectrale de quelques variet´es `a bouts Ann. Sci. Ecole Norm. Sup. (4) ´ 22, N. 1, 137-160 (1989)

13. L. Parnovski Spectral asymptotics of the Laplace operator on manifolds with cylindrical ends Int. J. Math., 6(1995), No. 6, 911-920.

14. M.Levitin, M.Marletta A simple method of calculating eigenvalues and resonances in domains with infinite regular ends Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), no. 5, 1043–1065.

15. P. Kurasov, B. Pavlov Few-body Krein’s Formula In Operator Theory: Advances and Applications,118, Operator Theory and related Topics, Vol.2, Birkhauser Verlag, Basel(2000) pp 225-254

16. Y. Melnikov, B. Pavlov Two-body scattering on a graph and application to simple nanoelectronic devices. Journ. Math. Phys. 36,6(1995) pp 2813- 2825.

17. T. Kato Perturbation theory for linear operators Springer Verlag, Berlin-Heidelberg-NY, second edition (1976)

18. N.I.Akhiezer, I.M.Glazman, Theory of Linear Operators in Hilbert Space, (Frederick Ungar, Publ., New-York, vol. 1, 1966) (Translated from Russian by M. Nestel)

19. E.P.Wigner, On a class of analytic functions from the quantum theory of collisions Annals of Mathematics, 2, N53, 36 (1951).

20. R.J. Bartlett, M. Musial Coupled -cluster theory in quantum chemistry, Reviews of Modern Physics, 79, 1, Jan. 2007, 291-351.

21. N.T.Bagraev, A.B.Mikhailova, B. Pavlov, L.V.Prokhorov and A.M.Yafyasov, Temperature stability of the triadic resonance quantum switch. In: 10-th MEL-ARI/NID Workshop, Helsinki,1-3 July 2002, Academy of Finland, Abstract 4 p.

22. A. Mikhailova and B. PavlovResonance Quantum Switch. In: S.Albeverio, N.Elander, W.N.Everitt and P.Kurasov (eds.), Operator Methods in Ordinary and Partial Differential Equations, (S.Kovalevski Symposium, Univ. of Stockholm, June 2000), Birkhauser, Basel-Boston-Berlin, (2002) pp 287-322

23. N.Bagraev, A.Mikhailova, B. Pavlov, L.Prokhorov, A.Yafyasov Parameter regime of a resonance quantum switch. In: Phys. Rev. B, 71, 165308 (2005), pp 1-16.

24. B. Pavlov and A. YafyasovSpin-dependent resonance transmission across the Quantum well In: NNCI-2005, 30.01.05 - 2.02.05 Atsugi, Kanagawa (2005), book of abstracts, p 147

25. C. Fox, V. Oleinik and B. Pavlov A Dirichlet-to-Neumann approach to resonance gaps and bands of periodic networks Contemporary mathematics 412 (2006) Proceedings of the Conference: Operator Theory and mathematical Physics, Birmingham, Alabama, April 2005, pp. 151-169.

26. A. Mikhailova, B. Pavlov, L. Prokhorov. Intermediate Hamiltonian via Glazman splitting and analytic perturbation for meromorphic matrix-functions. In: Mathematishe Nachrichten, 280, 12, (2007) pp 1376-1416

27. M. Harmer, B. Pavlov and A. Yafyasov, Boundary condition at the junction. In: Journal of computational electronics, 6, 1-3 ( September 2007), pp 153-157.

28. B. Pavlov, Y. YafyasovStanding waves and resonance transport mechanism in quantum networks. In: Surface Science 601 (2007), pp 2712 – 2716

29. V. Adamyan;B. Pavlov;A. Yafyasov. Modified Krein formula and analytic perturbation procedure for scattering on arbitrary junction. Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 1: Operator theory and related topics, Oper. Theory Adv. Appl., 190, Birkhauser Verlag, Basel (2009), pp 3–26. ¨

30. P. Lax, R. Phillips Scattering theory Academic Press,New York (1967)

31. H. Poincare Methodes nouvelles de la m´ecanique celeste Vol. 1 (1892), Second edition: Dover, New York (1957)

32. T. Murota On radioactive corrections due to soft photonsIn: Progress of Theoretical Physics 24, N 5 (1960)pp 1109-1117.

33. J. Dollard Asymptotic convergence and the coulomb interactionIn: J. Math. Phys. 5, N 6 (1964) pp 729-738.

34. I. Prigogine Irreversibility as a Symmetry-breaking Process In: Nature, 246, 9 (1973)

35. S. Lall, P. Krysl, J. Marsden Structure-preserving model reduction for mechanical systems In: Complexity and nonlinearity in physical systems (Tucson, AZ, 2001), Phys. D 184, 1-4 (2003) pp 304-318.

36. B. Pavlov, I. Antoniou Jump-start in analytic perturbation procedure for Friedrichs model. In J. Phys. A: Math. Gen. 38 (2005) pp 4811-4823.

37. B.Pavlov A star-graph model via operator extension Mathematical Proceedings of the Cambridge Philosophical Society, Volume 142, Issue 02, March 2007, pp 365-384. Published online by Cambridge University Press 10 Apr 2007.

38. N. Bagraev, G. Martin, B. Pavlov Landau-Zener Phenomenon on a double of weakly interacting quasi-2d lattices In: Progress in Computational Physics ( PiCP ) (2010) pp. 61-64

39. J. Ziman Electrons and phonons: the theory of transport phenomena in solids Oxford University Press 1960.

40. Yu. A. Bychkov and E. I. Rashba. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C.1984.17l.P.6039-6045.

41. J.Sylvester, G. Uhlmann The Dirichlet to Neumann map and applications. In: Proceedings of the Conference “ Inverse problems in partial differential equations (Arcata,1989) SIAM, Philadelphia, 1990, pp 101–139.

42. F. Gesztezy, Y. Latushkin, M. Mitrea and M. Zinchenko Non–selfadjoint operators, infinite determinants and some applications, Russian Journal of Mathematical Physics, 12, 443–71 (2005).

43. F.Gesztesy, M.Mitrea, M.Zinchenko, Multi-dimensional versions of a determinant formula due to Jost and Pais. Rep. Math. Phys. 59 (2007), no. 3, 365–377.

44. L. Schwartz Theorie des Distributions Hermann, Paris, 1957.

45. I.S. Gohberg and E.I. Sigal. Operator extension of the theorem about logarithmic residue and Rouchet theorem. Mat. Sbornik. 84(1971), p 607.

46. A. Mikhailova, B. Pavlov. Remark on the Compensation of singularities in Krein Formula. In: Operator Theory: Advanced and Applications, 186 (2008) pp 325-337.

47. B. Pavlov. Krein formula with compensated singularities for DN- Mapping and the generalized Kirchhoff Condition at the Neumann Schr¨odinger Junction In: Russian Journal of Mathematical Physics 15, 9 (2008) pp 364-388.

48. V. Adamyan, B. Pavlov Local scattering problem and a solvable model of a Quantum network. In: Operatr Theory: Advances and Applications. Birkhauser ¨ 198(2009) pp 1-10.

49. B.Pavlov. A solvable model for scattering on a junction and a modified analytic perturbation procedure.In: Characteristic functions, scattering functions and transfer functions 281–336, Oper. Theory Adv. Appl., 197, Birkhauser Verlag, Basel (2010) pp 281- 335. ¨

50. M.A.Krasnosel’skii On the extension of Hermitian operators with a nondense domain of definition (Russian) Doklady Akad. Nauk SSSR (N.S.) 59, (1948). 13–16.

51. B.Pavlov, V. Kruglov Symplectic operator-extension techniques and zero-range quantum models New Zealand J. Math. 34, no. 2 (2005) pp 125–142.

52. B. Pavlov, V. Kruglov Operator -extension technique for resonance scattering of neutrons by nuclei Hadronic Journal ,28, 3 (2005) pp 259 - 286.

53. Sirokov, Ju. M. Representation of free solutions for Schrцdinger equations with strongly singular concentrated potentials. (Russian) Teoret. Mat. Fiz. 46, 3 (1981)pp 291–299.

54. B.Pavlov A star-graph model via operator extension Mathematical Proceedings of the Cambridge Philosophical Society, Volume 142, Issue 02, March 2007, pp 365-384

55. B. Sz.-Nagy, C. Foias Analyse harmonique des operateurs de Space de Hilbert In French, Masson et Cie, Paris; Akadmiai Kiado, Budapest (1967) xi+373 pp.

56. V. Adamjan, V. Arov On unitary couplings of semi-unitary operators, Matematicheskie Isslenovanija, 1, 2 (1966) pp 3-64.

57. V. Adamjan, B. Pavlov, L. Prokhorov Chain rule for scattering matrices Manuscript.

58. L. Khalfin On the theory of decay of a quasy-stationary state In: Soviet Phys. Doklady V.2 (1958) p 340

59. S. Datta and B. Das Sarma Electronic analog of the electro-optic modulator. In: Appl. Phys. Lett. 1990. 56. N.7. P.665-667.

60. I. A. Shelykh, N. G. Galkin, and N. T. Bagraev. Quantum splitter controlled by Rashba spin-orbit coupling Phys. Rev.B 72,235316 (2005)

61. J. Splettstoesser, M. Governale, and U. Z ¨ulicke. Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling Phys. Rev. B, 68:165341 (2003).

62. R.G. Newton Scattering theory of waves and particlesNewton, Reprint of the 1982 second edition [Springer, New York; MR0666397 (84f:81001)], with list of errata prepared for this edition by the author. Dover Publications, Inc., Mineola, NY, 2002.

63. B. Pavlov The theory of extensions and explicitly solvable models (In Russian) Uspekhi Mat. Nauk, 42, (1987) pp 99-131.

64. V.I. Gorbachuk, M.L. Gorbachuk. Boundary value problems for operator differential equations. Translated and revised from the 1984 Russian original. Mathematics and its Applications (Soviet Series), 48. Kluwer Academic Publishers Group, Dordrecht, 1991.


Review

For citations:


Martin G., Yafyasov A.M., Pavlov B.S. Resonance one-body scattering on a junction. Nanosystems: Physics, Chemistry, Mathematics. 2010;1(1):108-147.

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)