Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Response of a stratified viscous half-space to a perturbation of the free surface

Аннотация

The flow of a highly viscous liquid in a half-space due to the deformation of the free surface is investigated. The viscosity of the layer adjoining to the free surface is different from the viscosity of the remaining half-space. In the framework of small perturbation theory, the relationship between the deformation of the free surface and the deformation of the layer/half-space interface is obtained. It was demonstrated that the volume and geometrical center of the perturbation on the interface and on the free surface are the same. The dependence of the perturbation’s amplitude and width on layer thickness was investigated. The results of numerical and analytical calculations are close, even for moderate free surface perturbations.

Об авторах

S. Chivilikhin
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Россия


A. Amosov
Corning Incorporated
Соединённые Штаты Америки


I. Melikhov
St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Россия


Список литературы

1. Happel S. J. and Brenner H. Low Reynolds Number Hydrodynamics. Upper Saddle River: Prentice-Hall, 553 p. (1965).

2. Chivilikhin S. and Amosov A. Planar Stokes flows with free boundary. In book “Hydrodynamics - Advanced Topics”. Book edited by: Dr. Harry Edmar Schulz, Andre Luiz. P. 77–92. Intech (2011).

3. Hopper R.W. Stokes flow of a cylinder and half-space driven by capillarity. J. Fluid. Mech., 243, P. 171–181 (1992).

4. De Voeght F. and Joos P. Damping of a disturbance of a liquid surface. Journal of Colloid and Interface Science, 98(1), P. 20–32 (1984).

5. Mullins W.W. Flattening of a nearly planar solid surface due to capillarity. J. Appl. Phys., 30(77), P. 77–83 (1959).

6. Lamb H. Hydrodynamics. Cambridge Univerity press, Cambridge, 768 p. (1993).

7. Levich V.G. Physicochemical hydrodynamics.Longman, Harlow, 700 p. (1962).

8. Zatsepin A.G., Kostyanoi A.G., and Shapiro G. I. Slow spreading of a viscous liquid over a horizontal surface. Dokl. Akad. Nauk SSSR. 265(1), P. 193–198 (1982).

9. Jeong J. T., Moffatt H. K. Free-surface cusps associated with flow at low Reynolds number. J. Fluid Mech., 241, P. 1–22 (1992).

10. Chivilikhin S. A. Relaxation of small perturbations of highviscous liquids planar surface. Nanosystems: Physics, chemistry, mathematics, 3(4), P.54–66 (2012).

11. Chivilikhin S. A. Relaxation of a small local perturbation of the surface of a viscous fluid in the Stokes approximation. Mekhanika Zhitdkosti i Gaza, 3, P. 133–137 (1985).


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2013;4(5):592-604.

For citation:


Chivilikhin S.A., Amosov A.S., Melikhov I.F. Response of a stratified viscous half-space to a perturbation of the free surface. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(5):592-604.

Просмотров: 12


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)