Physical properties of hot wall deposited Sn1-xPbxS thin films
Abstract
Thin films and nanorods of Sn1-xPbxS (0.00 ⩽ x ⩽ 0.45) with orthorhombic crystal structure and c-axis oriented perpendicular to the substrate surface were grown by hot wall vacuum deposition (HWVD) method. The nanorods grew via a self consuming vapor–liquid–solid (VLS) mechanism by means of Sn-droplets onto the surface of an underlying thin film. The former one consists of stacked blocks with their c-axis always parallel to the growth direction. However, each block is alternately rotated around the [001] against its underlying and subsequent one. As revealed by composition analysis, there is no composition gradient across or within the nanorods and the underlying film. The rods were about 500 nm high and 250 nm in diameter. The droplet at the top of rods consists of Sn with small trace of Pb and S. The density of rods, arranged like a lawn, depends on the metal ratio and substrate temperature. The as-grown Sn1-xPbxS samples showed p-type electrical conductivity. Increasing the lead atom concentration results in a decreased Seebeck coefficient and lower conductivity.
About the Authors
V. F. GremenokBelarus
220072; P. Brovka Street 19; Minsk
V. A. Ivanov
Belarus
220072; P. Brovka Street 19; Minsk
H. Izadneshan
Belarus
220072; P. Brovka Street 19; Minsk
V. V. Lazenka
Belgium
Institute for Nuclear and radiation physics (IKS)
3001; Celestijnenlaan 65/84; Leuven
A. Bakouie
Islamic Republic of Iran
Marvdasht Branch; Department of Physics
Marvdasht; Teheran
References
1. Razykov T.M. Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 85, P. 1580–1608 (2011).
2. Versavel M.Y., Haber J.A. Lead antimony sulfides as potential solar absorbers for thin film solar cells. Thin Solid Films, 515, P. 5767–5770 (2007).
3. Dittrich H., Bieniok A., Brendel U., Grodzicki M. A new class of compound semiconductors for photovoltaic applications. Thin Solid Films, 515, P. 5745–5750 (2007).
4. Unuchak D.M., Bente K., Kloess G., Schmitz W., Gremenok V.F., Ivanov V.A., Ukhov V. Structure and optical properties of PbS-SnS mixed crystal thin films. Physics Status Solidi C. 6, P. 1191–1194 (2009).
5. Krebs H. and Langner D. ¨Uber struktur und eigenschaften der halbmetalle. XVI. Mischkristallsysteme zwischen halbleitenden chalkogeniden der vierten hauptgruppe. Zeitschrift f¨ur anorganische und allgemeine Chemie, 334, P. 37–49 (1964).
6. Hayashi K., Kitakaze A., Sugaki A. A re-examination of herzenbergite-teallite solid solution at temperatures between 300 and 700 ◦C. Mineralogical Magazine, 65, P. 645–651 (2001).
7. Lebedev A.I., Sluchinskaya I.A., Munro I.H, An EXAFS study of the local structure of the PbxSn1−xS solid solution. Physics of the Solid State, 44, P. 1643–1647 (2002).
8. Thangaraju B. and Kaliannan P. Polycrystalline Lead Tin Chalcogenide Thin Film Grown by Spray Pyrolysis Crystal Research Technology, 35, P. 71–75 (2000).
9. Lieber C.M. One-Dimensional Nanostructures: Chemistry, Physics & Applications. Solid State Communications, 107, P. 607–616 (1998).
10. Manna L., Scher E.C., Alivisatos A.P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. American Chemistry Society, 122, P. 12700–12706 (2000).
11. Deng Z.X., Wang C., Sun X.M., Li Y.D. Structure-Directing Coordination Template Effect of Ethylene-diamine in Formations of ZnS and ZnSe Nanocrystallites via Solvothermal Route. Inorganic Chemistry, 41, P. 869–873 (2002).
12. Rao C.N., Deepak F.L., Gundiah. G., Govindaraj A. Inorganic nanowires. Progress Solid State Chemistry, 31, P. 5–147 (2003).
13. Xia Y.N., Yang P.D., Sun Y.G., Wu Y.Y., Mayers B., Gates B., Yin Y.D., Kim F., Yan H.Q. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15, P. 353–389 (2003).
14. Wagner R.S., Ellis W.S. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 4, P. 89–90 (1964).
15. Lopez-Otero, A. Hot wall epitaxy. Thin Solid Films, 49, P. 3–57 (1978).
16. Chaudhuri S., Mondal A., Pal A.K. Structural studies of CdSe films deposited onto glass, NaCI and substrates by a hot-wall technique. Journal of Materials Science Letters, 6, P. 366–369 (1987).
17. Seto S., Yamada S., Suzuki K. Growth kinetics and structural characterization of polycrystalline CdTe films grown by hot-wall vacuum evaporation. Solar Energy Materials and Solar Cells, 50, P. 133–139 (1998).
18. Velumani S., Narayandass S.K., Mangalara D. Structural characterization of hot wall deposited cadmium selenide thin films. Semiconductors Science and Technology, 13, P. 1016–1024 (1998).
19. Velumani, S., Mathew, X., Sebastian, P.J. Thickness dependent properties of hot wall deposited CdSe films. Journal of Materials Science Letters, 22, P. 25–28 (2003).
20. Muthukumarasamy N., Balasundaraprabhu R., Jayakumar S., Kannan M.D. Photoconductive properties of hot wall deposited CdSe<sub>0, 6</sub>Te<sub>0, 4</sub> thin films. Materials Science and Engineering B, 137, P. 1–4 (2007).
21. Agilan S., Venkatachalam S., Mangalaraj D., Narayandass Sa.K., Velumani S., Singh Vijay P. Structural and photoelectrical characterization of hot wall deposited CuInSe<sub>2</sub> thin films and the fabrication of CuInSe<sub>2</sub> based solar cells. Materials Characterization, 58, P. 701–707 (2007).
22. Schikora D., Sitter H., Humenberger J., Lischka K. High quality CdTe epilayers on GaAs grown by hotwall epitaxy. Applied Physics Letters, 48, P. 1276–1278 (1986).
23. Pal A.K., Mondal A., Chaudhuri S. Preparation and characterization of ZnTe/CdSe solar cells. Vacuum, 41, P. 1460–1462 (1990).
24. Bente K, Lazenka V.V., Unuchak D.G., Wagner G., Gremenok V.F. Epitaxial Sn1−xPbxS nanorods on iso-compositional thin films, Crystal. Research Technology, 45, P. 643–646 (2010).
Review
For citations:
Gremenok V.F., Ivanov V.A., Izadneshan H., Lazenka V.V., Bakouie A. Physical properties of hot wall deposited Sn1-xPbxS thin films. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):789-795.