Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Measuring local quantum yield of photoluminescence and phototransformations with laser scanning microscope

Abstract

   Measurement of local quantum yields for the photoluminescence of semiconductor nanocrystals (quantum dots) and photoinduced transformations of dye molecules in polymer films is demonstrated using a laser scanning microscope capable of mapping luminescence spectra and intensities of transmitted laser light. The confocal scanning microscope (Zeiss LSM710) was applied for both the induction of photochemical transformations and measurement The luminescence quantum yield values for quantum dots in different locations of a polymer film were found to differ, ostensibly depending on their aggregation. To measure photoisomerization quantum yield, the effects of scanning a tiny area of a polymer film with a focused beam on the intensities of luminescence and transmitted light were monitored.

About the Authors

V. V. Zakharov
ITMO University; Optec LLC
Russian Federation

St. Petersburg



M. A. Baranov
ITMO University
Russian Federation

St. Petersburg



A. S. Zlatov
ITMO University
Russian Federation

St. Petersburg



A. V. Veniaminov
ITMO University
Russian Federation

St. Petersburg



References

1. Rajeshwar K., de Tacconi N.R., Chenthamarakshan C.R. Semiconductor-Based Composite Materials: Preparation, Properties, and Performance. Chem. Mater., 13, P. 2765–2782 (2001).

2. Tomczak N., Janyczewski D., Han M., Vancso G.J. Designer polymer-quantum dot architectures. Progr. Polymer Sci., 34, P. 393–430 (2009).

3. Bukowski T.J., Simmons J.H. Quantum Dot Research: Current State and Future Prospects. Critical Reviews in Solid State and Materials Sciences, P. 119–142 (2002).

4. Demas J.N., Crosby G.A. The Measurement of Photoluminescence Quantum Yields. Review, J. Phys. Chem., 75, P. 991–1024 (1971).

5. Williams A.T.R., Winfield S.A., Miller J.N. Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst, 108, P. 1067–1071 (1983).

6. Lakowicz J.R. Principles of Fluorescence Spectroscopy, 3<sup>rd</sup> ed. Springer, 954 p. (2006).

7. Carlson L., Krauss T.D. Direct measurement of the fluorescence quantum yield for individual single-walled carbon nanotubes. Proc. Conf. Electrochem. Soc. ‘Carbon Nanotubes and Nanostructures: Fundamental Properties and Processes’, Abstr. 1018 (2007).

8. Brouwer A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem., 83, P. 2213–2228 (2011).

9. Wuerth C., Grabolle M., et al. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nature Protocols, 8, P. 1535–1550 (2013).

10. Kuhn H.J., Braslavsky S.E., Schmidt R. Chemical Actinometry (IUPAC Technical Report). Pure Appl. Chem., 76, P. 2105–2146 (2004).

11. Gaigalas A.K., Wang L. Measurement of the fluorescence quantum yield using a spectrometer with an integrating sphere detector. J. Res. Natl. Inst. Stand. Technol., 113, P. 17–28 (2008).

12. Bindhu C.V., Harilal S.S., et al. Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique. J. Phys. D: Appl. Phys., 29, P. 1074–1079 (1996).

13. Ebenstein Y., Mokari T., Banina U. Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl. Phys. Lett., 80, P. 4033 (2002).

14. Mostoslavskii M.A. Photochromic Thioindigoid Dyes. In: Organic Photochromes, ed. by Eltsov A.V., Springer, New York and London, P. 45–104 (1990).

15. Lashkov G.I., Popov A.P., Ratner O.B. Three-dimensional phase-recording reoxan media with physical development of a latent image. Opt. Spectrosc., 52, P. 350–352 (1982).

16. P.A. Carapellucci, H.P. Wolf, K. Weiss. Photoreduction of 9,10-Phenanthrenequinone. J. Amer. Chem. Soc., 91, P. 4635–4639 (1969).

17. Veniaminov A.V., Mahilny U.V. Holographic Polymer Materials with Diffusion Development: Principles, Arrangement, Investigation, and Applications. Opt. Spectrosc., 115, P. 902–925 (2013).

18. Haucke G., Paetzold R. Photophysikalische Chemie Indigoider Farbstoffe. Nova Acta Leopoldina. Deutsche Akademie der Naturforscher Leopoldina, Halle (Saale), 123 p. (1978).

19. Veniaminov A.V., Lashkov G.I. Photochemical isomerization of thioindigo derivatives embedded in poly(methylmethacrylate). Polymer Sci. USSR, 28, P. 963–971 (1986).


Review

For citations:


Zakharov V.V., Baranov M.A., Zlatov A.S., Veniaminov A.V. Measuring local quantum yield of photoluminescence and phototransformations with laser scanning microscope. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):811-819.

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)