Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Formation of chrysotile nanotubes with titania in the internal channel

https://doi.org/10.17586/2220-8054-2024-15-3-380-387

Abstract

   The paper studies the influence of titanium-containing compounds on the formation of hydrosilicate nanotubes under hydrothermal conditions. The possibility of titanium ions to enter the crystal structure, and of titania the nanotube channel, has been analyzed. The influence of temperature on the ratio of compounds forming under hydrothermal conditions was determined.

About the Authors

E. N. Gatina
http://nanojournal.ifmo.ru
I. V. Grebenshchikov Institute of Silicate Chemistry
Russian Federation

Elmira N. Gatina

199034; 2 Makarova Emb.; St. Petersburg



T. P. Maslennikova
http://nanojournal.ifmo.ru
I. V. Grebenshchikov Institute of Silicate Chemistry
Russian Federation

Tatiana P. Maslennikova

199034; 2 Makarova Emb.; St. Petersburg



References

1. Gofman I.V., Svetlichnyi V.M., Yudin V.E., Dobrodumov A.V., Didenko A.L., Abalov I.V., Korytkova E.N., Egorov A.I., Gusarov V.V. Modification of films of heat-resistant polyimides by adding hydrosilicate and carbon nanoparticles of various geometries. Russ. J. Gen. Chem., 2007, 77 (7), P. 1158–1163.

2. Kononova S.V., Korytkova E.N., Romashkova K.A., Kuznetsov Y.P., Gofman I.V., Svetlichnyi V.M., Gusarov V.V. Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology. Russ. J. Appl. Chem., 2007, 80 (12), P. 2142–2148.

3. Yudin V.E., Gladchenko S., Otaigbe J.U., Olson B.G., Nazarenko S., Korytkova E.N., Gusarov V.V. New polyimide nanocomposites based on silicate type nanotubes: Dispersion, processing and properties. Polymer, 2007, 48 (5), P. 1306–1315.

4. Yudin V.E., Otaigbe J.U., Svetlichnyi V.M., Korytkova E.N., Almjasheva O.V., Gusarov V.V. Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polimide nanocomposites. Express Polymer Letters, 2008, 2 (7), P. 485–493.

5. Kononova S.V., Korytkova E.N., Maslennikova T.P., Romashkova K.A., Kruchinina E.V., Potokin I.L., Gusarov V.V. Polymer-inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation. Russ. J. Gen. Chem., 2010, 80 (6), P. 1136–1142.

6. Yastrebinsky R.N. Nanodisperse hrizotilovy filler for heat-resistant radiation and protective composites. Int. Research J., 2016, 8–3 (50), P. 123–129 (In Russian, abstract in English).

7. Kononova S.V., Gubanova G.N., Korytkova E.N., Sapegin D.A. Polymer nanocomposite membranes. Applied Sciences, 2018, 8 (7), 1181.

8. Kivilcim F.N. Development of halloysite loaded polypropylene sutures with enhanced mechanical and thermal properties. Cumhuriyet Science J., 2023, 44 (1), P. 106–111.

9. Yang Y., Liang Q., Li J., Zhuang Y., He Y., Bai B., Wang X. Ni<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res., 2011, 4, P. 882–890.

10. Golubeva O.Y., Maslennikova T.P., Ulyanova N.Y., Dyakina M.P. Sorption of lead(II) ions and water vapors by synthetic hydro and aluminosilicates with layered, framework, and nanotube morphology. Glass Phys. Chem., 2014, 40 (2), P. 250–255.

11. Cheng L., Zhai L., Liao W., Huang X., Niu B., Yu Sh. An investigation on the behaviors of thorium(IV) adsorption onto chrysotile nanotubes. J. Environ. Chem. Eng., 2014, 2 (3), P. 1236–1242.

12. Yuan P., Tan D., Annabi-Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl. Clay Sci., 2015, 112–113, P. 75–93.

13. Bian Z., Li Z., Ashok J., Kawi S. A Highly active and stable Ni–Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water-gas shift reaction. Chem. Commun., 2015, 51, P. 16324–16326.

14. Chernyaev A.V., Mikhailin N.Y., Shamshur D.V., Kumzerov Y.A., Fokin A.V., Kalmykov A.E., Parfen’ev R.V., Sorokin L.M., Lashkul A. Electrical and magnetic properties of Pb and In nanofilaments in asbestos near the superconducting transition. Physics of the Solid State, 2018, 60 (10), P. 1935–1941.

15. L´opez-Salinas E., Toledo-Antonio J.A., Manr´ıquez M.E., S´anchez-Cant´u M., Cruz Ramos I., Hern´andez-Cortez J.G. Synthesis and catalytic activity of chrysotile-type magnesium silicate nanotubes using various silicate sources. Micropor. Mesopor. Mater., 2019, 274, P. 176–182.

16. Krasilin A.A., Straumal E.A., Yurkova L.L., Khrapova E.K., Tomkovich M.V., Shunina I.G., Vasil’eva L.P., Lermontov S.A., Ivanov V.K. Sulfated halloysite nanoscrolls as superacid catalysts for oligomerization of hexene-1. Russ. J. Appl. Chem., 2019, 92 (9), P. 1251–1257.

17. Khrapova E.K., Ezhov I.S, Rumyantsev A.M., Zhdanov V.V., Krasilin A.A. Nanotubular nickel hydrosilicate and its thermal annealing products as anode materials for lithium ion batteries. Inorg. Mater., 2020, 56 (12), P. 1248–1257.

18. Golubeva O.Yu, Alikina Y.A., Kalashnikova T.A. Influence of hydrothermal synthesis conditions on the morphology and sorption properties of porous aluminosilicates with kaolinite and halloysite structures. Appl. Clay Sci., 2020, 199, 105879.

19. Khrapova E.K., Ugolkov V.L., Straumal E.A., Lermontov S.A., Lebedev V.A., Kozlov D.A., Krasilin A.A. Thermal behavior of Mg-Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation. Chem. Nano Mat., 2020, 7 (3), P. 257–269.

20. Liu Z.Y., Zeng H., Wang L., Zhang Q., Wu P., Liu X., Xie H., Xiang W., Liu B., Liu J., Liu, X., Xie J., Tang J., Long Z., He L., Xiao M., Xiang L., Cao K. Fe-doped chrysotile nanotubes containing siRNAs to silence SPAG5 to treat bladder cancer. J. Nanobiotechnol., 2021, 19 (1), 189.

21. Yada M., Tabata M., Furukawa M. Synthesis and characterization of chrysotile/erythrosine composite to detect asbestos. J. of the Ceramic Society of Japan, 2023, 131 (12), P. 906–911.

22. Long Q., Yan H., Zhou X., Qiu S., Qiu T. Adsorption and desorption characteristics of rare earth ions on halloysite surfaces. Physicochem. Probl. Miner. Process, 2024, 60 (1), 185763.

23. Vezentsev A.I., Neiman S.M., Gudkova E.A. Transformations and changes in the properties of chrysotile asbestos under the influence of various factors. Construction Materials, 2006, 6, P. 104–105 (In Russian).

24. Malkov A.A., Korytkova E.N., Maslennikova T.P., Shtykhova A.M., Gusarov V.V. Effect of heat treatment on structural-chemical transformations in magnesium hydrosilicate Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanotubes. Russ. J. Appl. Chem., 2009, 82 (12), P. 2079–2086.

25. Kumzerov Yu.A., Naberezhnov A.A. Effect of restricted geometry on superconducting properties of low-melting metals (Review). Low Temperature Physics, 2016, 42 (11), P. 1028–1040.

26. Gaaz T.S. Sulong A.B., Kadhum A.A.H., Nassir M.H., Al-Amiery A.A. Surface improvement of halloysite nanotubes. Appl. Sci., 2017, 7 (3), 291.

27. Krasilin A.A., Bodalyov I.S., Malkov A.A., Khrapova E.K., Maslennikova T.P., Malygin A.A. On an adsorption/photocatalytic performance of nanotubular Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>/TiO<sub>2</sub> composite. Nanosystems: Phys. Chem. Math., 2018, 9 (3), P. 410–416.

28. Bloise A., Catalano M., Gualtieri A.F. Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment. Minerals, 2018, 8 (4), 135.

29. Krasilin A.A., Danilovich D.P., Yudina E.B., Bruyere S., Ghanbaja J., Ivanov V.K. Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls. Appl. Clay Sci., 2019, 173, P. 1–11.

30. Belotitskii V.I., Fokin A.V., Kumzerov Y.A., Sysoeva A.A. Optical properties of nanowires synthesized in regular nanochannels of porous matrices. Opt. Quant. Electron., 2020, 52 (4), 218.

31. Krasilin A. Khalisov M., Khrapova E., Ugolkov V., Enyashin A., Ankudinov A. Thermal treatment impact on the mechanical properties of Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> Nanoscrolls. Materials, 2022, 15 (24), 9023.

32. Maslennikova T.P., Gatina E.N., Kotova M.E., Ugolkov V.L., Abiev R.Sh., Gusarov V.V. Formation of magnesium hydrosilicate nanoscrolls with the chrysotile structure from nanocrystalline magnesium hydroxide and their thermally stimulated transformation. Inorg. Mater., 2022, 58 (11), P. 1152–1161.

33. Krivovichev S.V. Nanotubes in Minerals and Mineral-Related Systems. Minerals as Advanced Materials I, ed. Krivovichev S., 2008, P. 179–191.

34. Maslennikova T.P., Korytkova E.N., Pivovarova L.N. Hydrothermal synthesis of nanotube composition Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> · 2H<sub>2</sub>O with halloysite structure. Glass Phys. Chem., 2012, S6, P. 890–893.

35. Krasilin A.A., Gusarov V.V. Control over morphology of magnesium-aluminum hydrosilicate nanoscrolls. Russ. J. Appl. Chem., 2015, 88 (12), P. 1928–1935.

36. Krasilin A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clays and Clay Minerals, 2020, 68 (5), P. 436–445.

37. White R.D., Bavykin D.V., Walsh F.C. Spontaneous scrolling of kaolinite nanosheets into halloysite nanotubes in an aqueous suspension in the presence of GeO<sub>2</sub>. J. Phys. Chem. C, 2012, 116, P. 8824–8833.

38. Golubeva O.Y. Effect of synthesis conditions on hydrothermal crystallization, textural characteristics and morphology of aluminium-magnesium montmorillonite. Micropor. Mesopor. Mater., 2016, 224, P. 271–276.

39. Leonov N.A., Kozlov D.A., Kirilenko D.A., Bert N.A., Pelageikina A.O., Nechitailov A.A., Alikin M.B., Krasilin A.A. Formation of a 10 ˚A phase with halloysite structure under hydrothermal conditions with varying initial chemical composition. Nanosystems: Phys. Chem. Math., 2023, 14 (2), P. 264–271.

40. Chivilikhin S.A., Popov I.Y., Gusarov V.V. Dynamics of nanotube twisting in a viscous fluid. Doklady Physics, 2007, 52 (1), P. 60–62.

41. Chivilikhin S.A., Popov I.Y., Svitenkov A.I., Chivilikhin D.S., Gusarov V.V. Formation and evolution of nanoscroll ensembles based on layered-structure compounds. Doklady Physics, 2009, 54 (11), P. 491–493.

42. Chivilikhin S.A., Popov I.Y., Bogdanov M.S., Lesnichii V.V., Gusarov V.V. Hydrodynamics of nanorolling. Russ. Phys. J., 2009, 52 (11), P. 1117–1120.

43. Krasilin A.A., Gusarov V.V. Energy of formation of chrysotile nanotubes. Russ. J. Gen. Chem., 2014, 84 (12), P. 2359–2363.

44. Krasilin A.A., Gusarov V.V. Energy model of bilayer nanoplate scrolling: Formation of chrysotile nanoscroll. Russ. J. Gen. Chem., 2015, 85 (10), P. 2238–2241.

45. Krasilin A.A., Gusarov V.V. Energy model of radial growth of a nanotubular crystal. Technical Physics Letters, 2016, 42 (1), P. 55–58.

46. Krasilin A.A., Nevedomsky V.N., Gusarov V.V. Comparative energy modeling of multi-walled Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> and Ni<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanoscrolls growth. J. Phys. Chem. C, 2017, 121 (22), P. 12495–12502.

47. Korytkova E.N., Pivovarova L.N. Hydrothermal synthesis of nanotubes based on (Mg,Fe,Co,Ni)<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> hydrosilicates. Glass Phys. Chem., 2010, 36 (1), P. 53–60.

48. Korytkova E.N., Maslov A.V., Pivovarova L.N., Drozdova I.A., Gusarov V.V. Formation of Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanotubes under hydrothermal conditions. Glass Phys. Chem., 2004, 30 (1), P. 51–55.

49. Korytkova E.N., Maslov A.V., Pivovarova L.N., Polegotchenkova Y.V., Povinich V.F., Gusarov V.V. Synthesis of nanotubular Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>–Ni<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> silicates at elevated temperatures and pressures. Inorg. Mater., 2005, 41 (7), P. 743–749.

50. Korytkova E.N., Pivovarova L.N., Semenova O.E., Drozdova I.A., Povinich V.F., Gusarov V.V. Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate. Russ. J. Inorg. Chem., 2007, 52 (3), P. 338–344.

51. Korytkova E.N., Pivovarova L.N., Drosdova I.A., Gusarov V.V. Hydrothermal synthesis of nanotubular Co-Mg hydrosilicates with the chrysotile structure. Russ. J. Gen. Chem., 2007, 77 (10), P. 1669–1676.

52. Korytkova E.N., Semyashkina M.P., Maslennikova T.P., Pivovarova L.N., Al’myashev V.I., Ugolkov V.L. Synthesis and growth of nanotubes Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH,F)<sub>4</sub> composition under hydrothermal conditions. Glass Phys. Chem., 2013, 39 (3), P. 294–300.

53. Krasilin A.A., Suprun A.M., Gusarov V.V. Influence of component ratio in the compound (Mg,Fe)<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> on the formation of nanotubular and plate like particles. Russ. J. Appl. Chem., 2013, 86, P. 1633–1637.

54. Krasilin A.A., Suprun A.M., Nevedomsky V.N., Gusarov V.V. Formation of conical (Mg,Ni)<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanoscrolls. Dokl. Phys. Chem., 2015, 460 (2), P. 42–44.

55. Krasilin A.A., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of variable-composition iron(III) hydrosilicates with the chrysotile structure. Russ. J. Gen. Chem., 2016, 86 (12), P. 2581–2588.

56. Krasilin A.A., Suprun A.M., Ubyivovk E.V., Gusarov V.V. Morphology vs. chemical composition of single Ni-doped hydrosilicate nanoscroll. Materials Letters, 2016, 171, P. 68–71.

57. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Phys. Chem. Math., 2017, 8 (5), P. 620–627.

58. Krasilin A.A., Khrapova E.K., Nomine A., Ghanbaja J., Belmonte T., Gusarov V.V. Cations redistribution along the spiral of Ni-doped phyllosilicate nanoscrolls: energy modelling and STEM/EDS study. Chem. Phys. Chem., 2019, 20 (5), P. 719–726.

59. Kumzerov Y.A. Parfenyeva L.S., Smirnov I.A., Krivchikov A.I., Zvyagina G.A., Fil V.D., Misiorek H., Mukha Y., Ezhovsky A. Thermal and acoustic properties of chrysotile asbestos. Phys. Solid State, 2005, 47 (2), 370.

60. Malkov A.A., Korytkova E.N., Maslennikova T.P., Shtykhova A.M., Gusarov V.V. Effect of heat treatment on structural-chemical transformations in magnesium hydrosilicate [Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>] nanotubes. Russ. J. Appl. Chem., 2009, 82 (12), P. 2079–2086.

61. Khrapova E.K., Ugolkov V.L., Straumal E. A., Lermontov S.A., Lebedev V.A., Kozlov D.A., Kunkel T.S., Nomine A., Bruyere S., Ghanbaja J., Belmonte T., Krasilin A.A. Front Cover: Thermal behavior of Mg-Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation. Chem. Nano Mat., 2021, 7 (3), P. 257–269.

62. Korytkova E.N., Pivovarova L.N., Gusarov V.V. Influence of iron on the kinetics of formation of chrysotile nanotubes of composition (Mg,Fe)<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> under hydrothermal conditions. Geochemistry Int., 2007, 45 (8), P. 825–831.

63. Lafay R., Montes-Hernandez G., Janots E., Chiriac R., Findling N., Toche F. Nucleation and growth of chrysotile nanotubes in H<sub>2</sub>SiO<sub>3</sub>/MgCl<sub>2</sub>/NaOH medium at 90 to 300 ◦C. Chem. Eur. J., 2013, 19 (17), P. 5417–5424.

64. Anuradha G., Esha B.S. A Descriptive review on nanosponges in novel drug delivery, synthetic methods, advantages and applications. Int. J. of Pharmaceutical Sciences and Nanotechnology, 2023, 16 (4), P. 6932–6941.

65. Krasilin A.A., Khrapova E.K., Maslennikova T.P. Review: Cation doping approach for nanotubular hydrosilicates curvature control and related applications. Crystals, 2020, 10 (8), P. 654–695.

66. Skuland T., Maslennikova T., L˚ag M., Gatina E., Serebryakova M.K., Trulioff A.S., Kudryavtsev I.V., Klebnikova N., Kruchinina I., Schwarze P.E., Refsnes M. Synthetic hydrosilicate nanotubes induce low pro-inflammatory and cytotoxic responses compared to natural chrysotile in lung cell cultures. Basic Clin Pharmacol Toxicol., 2020, 126 (4), P. 374–388.

67. Vezentsev A.I., Smolikov A.A., Pylev L.N., Vasilyeva L.A. Preparation of chrysotile asbestos and its isomorphic analogues and assessment of their carcinogenic activity. J. of Environmental Chemistry, 1993, 2, P. 127–113 (In Russian).

68. Bernstein D.M., Hoskins J.A. The health effects of chrysotile: current perspective based upon recent data. Regul. Toxicol. Pharm., 2006, 45 (3), P. 252–264.

69. Pylev L.N., Smirnova O.V., Vasil’eva L.A., Vezentsev A.I., Gudkova E.A., Naumova L.N., Ne˘ıman S.M. Impact of modification of the fiber surface of chrysotile on its biological activity. Gig Sanit, 2007, 2, P. 77–80 (In Russian).

70. Gazzano E., Turci F., Foresti E., Putzu M. G., Aldieri E., Silvagno F., Lesci I.G., Tomatis M., Riganti C., Romano C., Fubini B., Roveri N., Ghigo D. Iron-loaded synthetic chrysotile: a new model solid for studying the role of iron in asbestos toxicity. Chem. Res. Toxicol., 2007, 20 (3), P. 380–387.

71. Vezentsev A.I., Pylev L.N., Poutlyayev V.I., Knot’ko A.V., Naumova L.N., Goudkova E.A., Smirnova O.V. Increase the ecological safety of chrysotile-asbestos due to action of Portland cement hydration. Ecology and Industry of Russia, 2009, 7, P. 34–37 (In Russian).

72. Liu X., Ma Y., Yan W., He M., Li L., Sui X., Peng B. Identify key serpentines antigorite, lizardite and chrysotile with various compositions and crystallographic orientations using micro-Raman spectroscopy. Solid Earth Sciences, 2023, 8 (4).

73. Ono Y., Kikuchi N., Watanabe H. Preparation of nickel catalyst from nickel containing chrysotile. Studies in Surface Science and Catalysis, 1987, 31, P. 519–529.

74. Bloise A. Growth and Hydrothermal alteration of silicates doped with Ti<sup>4+</sup>, Ni<sup>2+</sup>: synthesis of Ni-, Ti-, Fe-serpentine phases. Plinies, 2006, 32, P. 70–75.

75. Maslennikova T.P., Korytkova E.N., Gusarov V.V. Interaction of Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanotubes with potassium hydroxide. Russ. J. Appl. Chem., 2008, 81 (3), P. 375–379.

76. Bloise A., Barrese E., Apollaro C. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neues Jahrbuch f¨ur Mineralogie – Abhandlungen, 2009, 185 (3), P. 972–304.

77. Maslennikova T.P., Korytkova E.N. Aqueous solutions of cesium salts and cesium hydroxide in hydrosilicate nanotubes of the Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> composition. Glass Phys. Chem., 2010, 36 (3), P. 345–350.

78. Maslennikova T.P., Gatina E.N. Modification of Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanotubes by magnetite nanoparticles. Glass Phys. Chem., 2016, 43 (3), P. 257–262.

79. Bodalyov I.S., Malkov A.A., Korytkova E.N., Maslennikova T.P., Malygin A.A. Temperature factor in interaction of nanotubular magnesium hydrosilicate, Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>, with titanium tetrachloride and water vapors. Russ. J. Appl. Chem., 2014, 87 (2), P. 151–159.

80. Maslennikova T.P., Korytkova E.N., Gatina E.N., Pivovarova L.N. Effect of temperature on the synthesis of nanoparticles with different morphology in the system MgO–SiO<sub>2</sub>–TiO<sub>2</sub>–H<sub>2</sub>O under hydrothermal conditions. Glass Phys. Chem., 2016, 42 (6), P. 627–630.

81. Maslennikova T.P., Gatina E.N. Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies. Russ. J. Appl. Chem., 2018, 91 (2), P. 286–291.

82. Bubnova R.S., Firsova V.A., Volkov S.N., Filatov S.K. RietveldToTensor: program for processing powder X-Ray diffraction data under variable conditions. Glass Phys. Chem., 2018, 44 (1), P. 33–40.

83. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32, P. 751–767.

84. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO<sub>2</sub>–H<sub>2</sub>O system. Nanosystems: Phys. Chem. Math., 2016, 7 (6), P. 1031–1049.

85. Sharikov F. Y., Korytkova E. N., Gusarov V.V. Effect of the thermal prehistory of components on the hydration and crystallization of Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> nanotubes under hydrothermal conditions. Glass Phys. Chem., 2007, 33 (5), P. 515–520.

86. Krasilin A.A., Almjasheva O.V., Gusarov V.V. Effect of the structure of precursors on the formation of nanotubular magnesium hydrosilicate. Inorg. Mater., 2011, 47 (10), P. 1111–1115.

87. Levin A., Khrapova E., Kozlov D., Krasilin A., Gusarov V. Structure refinement, microstrains and crystallite sizes of Mg-Ni-phyllosilicate nanoscroll powders. J. Appl. Cryst., 2022, 55 (3), P. 484–502.

88. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Phys. Chem. Math., 2014, 5(3), P. 405–416.

89. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Phys. Chem. Math., 2018, 9 (4), P. 568–572.

90. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Phys., Chem. Math., 2022, 13 (2), P. 164–180.


Review

For citations:


Gatina E.N., Maslennikova T.P. Formation of chrysotile nanotubes with titania in the internal channel. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):380-387. https://doi.org/10.17586/2220-8054-2024-15-3-380-387

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)