Hydrogen adsorption properties of metal-organic frameworks within the density-functional based tight-binding approach
Abstract
Practical methods for hydrogen storage are still a prime challenge in the realization of an energy economy based on Hydrogen. Metal organic frameworks (MOFs) are crystalline ultra-porous materials with ability to trap and store voluminous amounts of gas molecules. MOFs represent an encouraging storage method relying on their enormous surface area. However, MOFs show reduced hydrogen uptake at room temperature due to low adsorption energy of hydrogen. To increase the adsorption uptake of MOFs at room temperature, the adsorption energy must be increased. In this contribution, materials exhibiting higher adsorption energy and enhanced hydrogen adsorption, namely MIL-53 (Al) and MOF-74, have been investigated using molecular dynamics (MD) simulation. MD simulations were performed within the density functional based tight binding method (DC-SCC-DFTB). Our results demonstrate that DC-SCC-DFTB method predicts structural parameters, adsorption sites, adsorption energies and diffusion factors with a very good accuracy, making this method a very powerful tool to investigate various types of MOF. Moreover, results show that the adsorption energy can be increased by incorporation of transition metals in MOF structures.
About the Authors
Bassem AssfourSyrian Arab Republic
Bassem Assfour
Department of Chemistry
P.O. Box 6091; Damascus
Tel.: +963 11 213 2580, Fax: +963 11 611 2289
Thaer Assaad
Syrian Arab Republic
Thaer Assaad
Department of Chemistry
P.O. Box 6091; Damascus
Tel.: +963 11 213 2580, Fax: +963 11 611 2289
Adnan Odeh
Syrian Arab Republic
Adnan Odeh
Department of Chemistry
P.O. Box 6091; Damascus
Tel.: +963 11 213 2580, Fax: +963 11 611 2289
References
1. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 6149 (2013).
2. Tranchemontagne D.J., Park K.S., et al. Hydrogen Storage in New Metal-Organic Frameworks. The Journal of Physical Chemistry C, 116(24), P. 13143–51 (2012).
3. Furukawa H., Ko N., et al. Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329 (5990), P. 424-8 (2010).
4. Jiang J. Molecular simulations in metal-organic frameworks for diverse potential applications. Molecular Simulation, 40 (7–9), P. 516–36 (2014).
5. Keskin S. Gas adsorption and diffusion in a highly CO<sub>2</sub> selective metal-organic framework: molecular simulations. Molecular Simulation, 39 (1), P. 14–24 (2012).
6. Kuc A., Heine T., Seifert G., Duarte H.A. On the nature of the interaction between H-2 and metal-organic frameworks. Theoretical Chemistry Accounts, 120 (4–6), P. 543–50 (2008).
7. Dangi G.P., Pillai R.S., et al. A density functional theory study on the interaction of hydrogen molecule with MOF-177. Molecular Simulation, 36 (5), P. 373–81 (2010).
8. Bae Y-S, Snurr RQ. Molecular simulations of very high pressure hydrogen storage using metal-organic frameworks. Microporous and Mesoporous Materials. 135 (1–3), P. 178–86 (2010).
9. Li J., Furuta T., et al. Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. The Journal of Chemical Physics, 119 (4), P. 2376–85 (2003).
10. Bhatia S.K., Myers A.L. Optimum Conditions for Adsorptive Storage. Langmuir, 22 (4), P. 1688–700 (2006).
11. Bae Y.-S., Snurr R.Q. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks. Microporous and Mesoporous Materials, 132 (1–2), P. 300–3 (2010).
12. Thornton A.W., Nairn K.M., et al. Metal-Organic Frameworks Impregnated with Magnesium-Decorated Fullerenes for Methane and Hydrogen Storage. Journal of the American Chemical Society, 131 (30), P. 10662–9 (2009).
13. Rao D., Lu R., et al. Influences of lithium doping and fullerene impregnation on hydrogen storage in metal organic frameworks. Molecular Simulation, 39 (12), P. 968–74 (2013).
14. Rowsell J.L.C., Yaghi O.M. Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie-International Edition, 44 (30), P. 4670–9 (2005).
15. Ahnfeldt T., Guillou N., et al. [Al<sub>4</sub>(OH)<sub>2</sub>(OCH<sub>3</sub>)<sub>4</sub>(H<sub>2</sub>N-bdc)<sub>3</sub>].x H<sub>2</sub>O: A 12-Connected Porous Metal-Organic Framework with an Unprecedented Aluminum-Containing Brick. Angewandte Chemie-International Edition, 48 (28), P. 5163–6 (2009).
16. Lin Y., Kong C., Chen L. Facile Synthesis of Aluminum-Based Metal-Organic Frameworks with Different Morphologies and Structures through an OH?-Assisted Method. Chemistry - An Asian Journal, 8 (8), P. 1873–8 (2013).
17. Reinsch H., Kruger M., et al. A new aluminium-based microporous metal-organic framework: Al(BTB) (BTB:1,3,5-benzenetrisbenzoate). Microporous and Mesoporous Materials, 157 (0), P. 50–5 (2012).
18. Senkovska I., Hoffmann F., et al. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc)(ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc)(bpdc=4,4 ’-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122 (1–3), P. 93–8 (2009).
19. Couck S., Denayer J.F.M., et al. An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO<sub>2</sub> and CH<sub>4</sub>. Journal of the American Chemical Society, 131 (18), P. 6326 (2009).
20. Serre C., Millange F., et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH).O<sub>2</sub>C-C<sub>6</sub>H<sub>4</sub>-CO<sub>2</sub>.HO<sub>2</sub>C-C<sub>6</sub>H<sub>4</sub>-CO<sub>2</sub>H<sub>x</sub>. H<sub>2</sub>O<sub>y</sub>. Journal of the American Chemical Society, 124 (45), P. 13519–26 (2002).
21. Loiseau T., Serre C., et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry - a European Journal, 10 (6), P. 1373–82 (2004).
22. Ferey G., Latroche M., et al. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O<sub>2</sub>C-C<sub>6</sub>H<sub>4</sub>-CO<sub>2</sub>) (M = Al<sup>3+</sup>, Cr<sup>3+</sup>), MIL-53. Chemical Communications, 24, P. 2976–7 (2003).
23. Liu Y., Kabbour H., et al. Increasing the Density of Adsorbed Hydrogen with Coordinatively Unsaturated Metal Centers in Metal-Organic Frameworks. Langmuir, 24 (9), P. 4772–7 (2008).
24. Sculley J., Yuan D., Zhou H.-C. The current status of hydrogen storage in metal-organic frameworks-updated. Energy & Environmental Science, 4 (8), P. 2721–35 (2011).
25. Goldsmith J., Wong-Foy A.G., Cafarella M.J., Siegel D.J. Theoretical Limits of Hydrogen Storage in Metal-Organic Frameworks: Opportunities and Trade-Offs. Chemistry of Materials, 25 (16), P. 3373–82 (2013).
26. Suraweera N.S., Xiong R., et al. On the relationship between the structure of metal-organic frameworks and the adsorption and diffusion of hydrogen. Molecular Simulation, 37 (7), P. 621–39 (2011).
27. Xu Q., Liu D., Yang Q., Zhong C. Molecular simulation study of the quantum effects of hydrogen adsorption in metal-organic frameworks: influences of pore size and temperature. Molecular Simulation, 35 (9), P. 748–54 (2009).
28. Elstner M.P.D. Jungnickel G., et al. A Self-Consistent Charge Density-Functional Based Tight-Binding Method for Predictive Materials Simulations in Physics. Chemistry and Biology physica status solidi (b), 217 (1), P. 41–62 (2000).
29. Elstner M., Cui Q., et al. Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: Applications to structural and energetic analysis. Journal of Computational Chemistry, 24 (5), P. 565–81 (2003).
30. Zhechkov L., Heine T., et al. An efficient a Posteriori treatment for dispersion interaction in density-functional-based tight binding. Journal of Chemical Theory and Computation, 1 (5), P. 841–7 (2005).
31. Oliveira A.F., Seifert G., Heine T., Duarte H.A. Density-functional based tight-binding: an approximate DFT method. Journal of the Brazilian Chemical Society, 20, P. 1193–205 (2009).
32. Heine T., Rapacioli M., et al. DeMon-nano: Jacobs University Bremen Bremen. Germany (2009).
33. Heine T., Dos Santos H.F., Patchkovskii S., Duarte H.A. Structure and Dynamics of β-Cyclodextrin in Aqueous Solution at the Density-Functional Tight Binding Level. The Journal of Physical Chemistry A, 111 (26), P. 5648–54 (2007).
34. Zhu X., Koenig P., et al. Establishing effective simulation protocols for β- and α/β-peptides. III. Molecular mechanical model for acyclic β-amino acids. Journal of Computational Chemistry, 31 (10), P. 2063–77 (2010).
35. Kuc A., Enyashin A., Seifert G. Metal-Organic Frameworks: Structural, Energetic, Electronic, and Mechanical Properties. The Journal of Physical Chemistry B, 111 (28), P. 8179–86 (2007).
36. Lukose B., Supronowicz B., et al. Structural properties of metal-organic frameworks within the density-functional based tight-binding method. Physica status solidi (b), 249 (2), P. 335–42 (2012).
37. Lukose B., Kuc A., Heine T. The Structure of Layered Covalent-Organic Frameworks. Chemistry - A European Journal, 17 (8), P. 2388–92 (2011).
38. Assfour B., Seifert G. Hydrogen adsorption sites and energies in 2D and 3D covalent organic frameworks. Chemical Physics Letters, 489 (1–3), P. 86–91 (2010).
39. Kuc A., Enyashin A., Seifert G. Metal-organic frameworks: Structural, energetic, electronic, and mechanical properties. Journal of Physical Chemistry B, 111 (28), P. 8179–86 (2007).
40. Frenzel J., Oliveira A.F., et al. Structural and electronic properties of bulk gibbsite and gibbsite surfaces. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 631 (6–7), P. 1267–71 (2005).
41. Schmitz B., Muller U., et al. Heat of Adsorption for Hydrogen in Microporous High-Surface-Area Materials. Chemphyschem, 9 (15), P. 2181–4 (2008).
42. Dinca M., Dailly A., et al. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn<sup>2+</sup> Coordination Sites. Journal of the American Chemical Society, 128 (51), P. 16876–83 (2006).
43. Dinc M., Han W.S., et al. Observation of Cu<sup>2+</sup>–H<sub>2</sub> Interactions in a Fully Desolvated Sodalite-Type Metal-Organic Framework. Angewandte Chemie International Edition, 46 (9), P. 1419–22 (2007).
44. Peterson V.K., Liu Y., Brown C.M., Kepert C.J. Neutron Powder Diffraction Study of D2 Sorption in Cu<sub><sub>3</sub></sub>(1,3,5-benzenetricarboxylate)2. J. Am. Chem. Soc., 128 (49), P. 15578–9 (2006).
45. Zhou W., Wu H., Yildirim T.. Enhanced H-2 Adsorption in Isostructural Metal-Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical Society, 130 (46), P. 15268-15269 (2008).
46. Salles F., Kolokolov D.I., et al. Adsorption and Diffusion of H-2 in the MOF Type Systems MIL-47(V) and MIL-53(Cr): A Combination of Microcalorimetry and QENS Experiments with Molecular Simulations. Journal of Physical Chemistry C, 113 (18), P. 7802–12 (2009).
47. Mulder F.M., Dingemans T.J., Wagemaker M., Kearley G.J. Modelling of hydrogen adsorption in the metal organic framework MOF5. Chemical Physics, 317 (2–3), P. 113–8 (2005).
48. Narehood D.G., Pearce J.V., et al. Diffusion of H<sub>2</sub> adsorbed on single-walled carbon nanotubes. Physical Review B, 67 (20), P. 205409 (2003).
Review
For citations:
Assfour B., Assaad T., Odeh A. Hydrogen adsorption properties of metal-organic frameworks within the density-functional based tight-binding approach. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):820-828.