Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles
Abstract
Nanoparticles based on ZrO2 in the form of spheres, cylinders and agglomerates in the form of hollow microspheres were obtained. It is shown that the main factor influencing on the formation of nanostructures based on zirconium dioxide under hydrothermal conditions is the chemical prehistory of the starting materials. The possibility of varying the synthetic parameters to obtain a zirconia-based material with high porosity and specific surface area was shown.
About the Authors
A. N. BugrovRussian Federation
Saint Petersburg.
O. V. Almjasheva
Russian Federation
Saint Petersburg.
References
1. J.P. Jolivet, S. Cassaignon, C. Chan´eac, et al. Design of metal oxide nanoparticles: Control of size, shape, crystalline structure and functionalization by aqueous chemistry. Comptes Rendus Chimie, 13(1– 2), P. 40–51 (2010).
2. A. Aslani. Controlling the morphology and size of CuO nanostructures with synthesis by solvo/hydrothermal method without any additives. Physica B: Condensed Matter, 406(2), P. 150–154 (2011).
3. H. Eltejaei, J. Towfighi, H.R. Bozorgzadeh, M.R. Omidkhah, A. Zamaniyan. The influence of preparation conditions on ZrO2 nanoparticles with different PEG–PPG–PEG surfactants by statistical experimental design. Materials Letters, 65(19–20), P. 2913–2916 (2011).
4. O.V. Almjasheva, B.A. Fedorov, A.V. Smirnov, V.V. Gusarov. Size, morphology and structure of the particles of zirconia nanopowder obtained under hydrothermal conditions. Nanosystems: physics, chemistry, mathematics, 1(1), P. 26–36 (2010).
5. E. Lester, P. Blooda, J. Lia, M. Poliakoff. Advancements in the supercritical water hydrothermal synthesis (scWHS) of metal oxide nanoparticles. NSTI-Nanotech. Boston, May 7–11, 2006, 1, P. 347–350.
6. X.Y. Shen, Y.C. Zhai, Y.H. Zhang Preparation and characterization of ultrafine zinc oxide powder by hydrothermal method. Transactions of Nonferrous Metals Society of China, 20(1), P. 236–239 (2010).
7. K. Byrappa, M. Yoshimura. Handbook of hydrothermal technology — A technology for crystal growth and materials processing. Norwich, N.Y.: Noyes Publications, 870 p. (2001).
8. H. Hayashi, Y. Hakuta. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3, P. 3794–3817 (2010).
9. E. Lester, P. Blood, J. Denyer, et al. Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. Journal of Supercritical Fluids, 37(2), P. 209–214 (2006).
10. F.Q. Lin, W.S. Dong, C.L. Liu, et al. In situ source–template-interface reaction route to hollow ZrO2 microspheres with mesoporous shells. Journal of Colloid and Interface Science, 323, P. 365371 (2008).
11. G. Gundiah, S. Mkhopadhyay, U.G. Tomkurkar, A. Govindaraj, U. Maitra, C.N.R. Rao. Hydrogel route to nanotubes of metal oxides and sulfates. Journal of Materials Chemistry, 13, P. 2118–2122 (2003).
12. O.V. Pozhidaeva, E.N. Korytkova, D.P. Romanov, V.V. Gusarov. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions. Russian Journal of General Chemistry, 72(6), P. 849–853 (2002).
13. O.V. Pozhidaeva, E.N. Korytkova, I.A. Drozdova, V.V. Gusarov. Phase state and particle size of ultradispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis. Russian Journal of General Chemistry, 69(8), P. 1219–1222 (1999).
14. A. Mondal, S. Ram Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceramics International, 30(2), P. 239–249 (2004).
15. O.V. Almyasheva. Hydrothermal synthesis, structure and properties of nanocrystals and nanocomposites based on the system ZrO2-Al2O3-SiO2 (In Russian): dissertation. St. Petersburg, ISC RAS, 239 p. (2007).
Review
For citations:
Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):810-815.