Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Copper-modified g-C3N4/TiO2 nanostructured photocatalysts for H2 evolution from glucose aqueous solution

https://doi.org/10.17586/2220-8054-2024-15-3-388-397

Abstract

   Two strategies for synthesis of copper-modified composite photocatalysts based on graphitic carbon nitride and titanium dioxide for hydrogen evolution reaction are presented. The first one is based on the mechanical dispersion of separately prepared g-C3N4 and commercial TiO2 (Evonik P25), modified with copper. Another approach is co-calcination of melamine and commercial TiO2 with subsequent modification by copper. The samples were characterized using X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The synthesized photocatalysts were tested in hydrogen evolution from glucose aqueous solution under visible light irradiation (440 nm). The largest photocatalytic activities met 235 and 259 µmol·g−1·h−1, corresponding to the first and the second photocatalyst series, respectively. The most active photocatalyst from the first series 1 wt. % g-C3N4/1 wt. % CuOn/TiO2 maintained its hydrogen production rate during a 6-hour cyclic stability test.

About the Authors

S. N. Kharina
http://nanojournal.ifmo.ru
Boreskov Institute of Catalysis SB RAS
Russian Federation

Sofiya N. Kharina

630090; Lavrentieva Ave, 5; Novosibirsk



A. Yu. Kurenkova
http://nanojournal.ifmo.ru
Boreskov Institute of Catalysis SB RAS
Russian Federation

Anna Yu. Kurenkova

630090; Lavrentieva Ave, 5; Novosibirsk



A. A. Saraev
http://nanojournal.ifmo.ru
Boreskov Institute of Catalysis SB RAS
Russian Federation

Andrey A. Saraev

630090; Lavrentieva Ave, 5; Novosibirsk



E. Yu. Gerasimov
http://nanojournal.ifmo.ru
Boreskov Institute of Catalysis SB RAS
Russian Federation

Evgeny Yu. Gerasimov

630090; Lavrentieva Ave, 5; Novosibirsk



E. A. Kozlova
http://nanojournal.ifmo.ru
Boreskov Institute of Catalysis SB RAS
Russian Federation

Ekaterina A. Kozlova

630090; Lavrentieva Ave, 5; Novosibirsk



References

1. Kou J., Lu, C., Wang J., Chen Y., Xu Z., Varma R.S. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations. Chem. Rev., 2017, 117 (3), P. 1445–1514.

2. de Assis G.C., Silva I.M.A., dos Santos T.G., dos Santos T. V. Meneghetti M.R., Meneghetti S.M.P. Photocatalytic Processes for Biomass Conversion. Catal. Sci. Technol., 2021, 11 (7), P. 2354–2360.

3. Valeeva A.A., Dorosheva I.B., Kozlova E.A., Sushnikova A.A., Yu A., Saraev A.A., Schroettner H., Rempel A.A. Solar Photocatalysts Based on Titanium Dioxide Nanotubes for Hydrogen Evolution from Aqueous Solutions of Ethanol. Int. J. Hydrogen Energy, 2021, 46 (32), P. 16917–16924.

4. Kurnosenko S.A., Zvereva I.A., Voytovich V. V., Silyukov O.I., Rodionov I.A. Photocatalytic Activity and Stability of Organically Modified Layered Perovskite-like Titanates HLnTiO<sub>4</sub> (Ln = La, Nd) in the Reaction of Hydrogen Evolution from Aqueous Methanol. Catalysts, 2023, 13 (4), 749.

5. Kurnosenko S.A., Voytovich V.V., Silyukov O.I., Rodionov I.A., Zvereva I.A. Photocatalytic Hydrogen Production from Aqueous Solutions of Glucose and Xylose over Layered Perovskite-like Oxides HCa<sub>2</sub>Nb<sub>3</sub>O<sub>10</sub>, H<sub>2</sub>La<sub>2</sub>Ti<sub>3</sub>O<sub>10</sub> and Their Inorganic-Organic Derivatives. Nanomaterials, 2022, 12 (15), 2717.

6. Samage A., Gupta P., Halakarni M.A., Nataraj S.K., Sinhamahapatra A. Progress in the Photoreforming of Carboxylic Acids for Hydrogen Production. Photochem., 2022, 2 (3), P. 580–608.

7. Imizcoz M., Puga A.V. Acid Photoreforming on Cu/TiO<sub>2</sub>. Catalysis Science & Technology, 2019, 9 (5), P. 1098–1102.

8. Davis K.A., Yoo S., Shuler E.W., Sherman B.D., Lee S., Leem G. Photocatalytic Hydrogen Evolution from Biomass Conversion. Nano Convergence, 2021, 8 (6), P. 1–19.

9. Huang Z., Luo N., Zhang C., Wang F. Radical Generation and Fate Control for Photocatalytic Biomass Conversion. Nature Reviews Chemistry, 2022, 6, P. 197–214.

10. Butburee T., Chakthranont P., Phawa C., Faungnawakij K. Beyond Artificial Photosynthesis: Prospects on Photobiorefinery. Chem. Cat. Chem., 2020, 12 (7), P. 1873–1890.

11. Liu X., Duan X., Wei W., Wang S., Ni B.J. Photocatalytic Conversion of Lignocellulosic Biomass to Valuable Products. Green Chemistry, 2019, 21, P. 4266–4289.

12. Chu Y.M., Bach Q.V. Application of TiO<sub>2</sub> Nanoparticle for Solar Photocatalytic Oxidation System. Appl. Nanosci., 2023, 13 (3), P. 1729–1736.

13. Qian R., Zong H., Schneider J., Zhou G., Zhao T., Li Y., Yang J., Bahnemann D.W., Pan J.H. Charge Carrier Trapping, Recombination and Transfer during TiO<sub>2</sub> Photocatalysis : An Overview. Catal. Today, 2019, 335, P. 78–90.

14. Shiraishi Y., Hirai T. Selective Organic Transformations on Titanium Oxide-Based Photocatalysts. J. of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9 (4), P. 157–170.

15. Chai B., Peng T., Mao J., Li K., Zan L. Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>)-Pt-TiO<sub>2</sub> Nanocomposite as an Efficient Photocatalyst for Hydrogen Production under Visible Light Irradiation. Phys. Chem. Chem. Phys., 2012, 14 (48), P. 16745–16752.

16. Yan H., Yang H. TiO<sub>2-g</sub>-C<sub>3</sub>N<sub>4</sub> Composite Materials for Photocatalytic H<sub>2</sub> Evolution under Visible Light Irradiation. J. of Alloys and Compounds, 2011, 509 (4), L26–L29.

17. Shoaib M., Naz M.Y., Shukrullah S., Munir M.A., Irfan M., Rahman S., Ghanim A.A.J. Dual S-Scheme Heterojunction CdS/TiO<sub>2/g</sub>-C<sub>3</sub>N<sub>4</sub> Photocatalyst for Hydrogen Production and Dye Degradation Applications. ACS Omega, 2023, 8 (45), P. 43139–43150.

18. Wei D.W., DuChene J.S., Sweeny B.C., Wang J., Niu W. Current Development of Photocatalysts for Solar Energy Conversion. New and Future Developments in Catalysis: Solar Photocatalysis, Elsevier, USA, 2013, P. 279–304.

19. Li J., Chu D. Energy Band Engineering of Metal Oxide for Enhanced Visible Light Absorption. Multifunctional Photocatalytic Materials for Energy, 2018, P. 49–78.

20. Ye S., Wang R., Wu M.Z., Yuan Y.P. A Review on g-C<sub>3</sub>N<sub>4</sub> for Photocatalytic Water Splitting and CO<sub>2</sub> Reduction. Applied Surface Science, 2015, 358, P. 15–27.

21. Mamba G., Mishra A.K. Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. Appl. Catal. B Environ., 2016, 198, P. 347–377.

22. Zheng Y., Lin L., Wang B., Wang, X. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. Angew. Chemie – Int. Ed., 2015, 54 (44), P. 12868–12884.

23. Dong J., Zhang Y., Hussain M.I., Zhou W., Chen Y., Wang L.N. g-C3N4: Properties, Pore Modifications, and Photocatalytic Applications. Nanomaterials, 2021, 12 (1), 121.

24. Lingzhiiwangg J.B., Juyingglei M. Photocatalysis Fundamentals, Materials and Applications, Springer, Singapore, 2018, 414 p.

25. Kurenkova A.Y., Yakovleva A.Y., Saraev A.A., Gerasimov E.Y., Kozlova E.A., Kaichev V.V. Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol. Nanomaterials, 2022, 12 (18), 3106.

26. W¨ollner A., Lange F., Schmelz H., Kn¨ozinger H. Characterization of Mixed Copper-Manganese Oxides Supported on Titania Catalysts for Selective Oxidation of Ammonia. Appl. Catal. A, Gen., 1993, 94 (2), P. 181–203.

27. Fedorov A., Saraev A., Kremneva A., Selivanova A., Vorokhta M., ˇSm´ıd, B., Bulavchenko, O., Yakovlev, V., Kaichev, V. Kinetic and Mechanistic Study of CO Oxidation over Nanocomposite Cu–Fe–Al Oxide Catalysts. Chem. Cat. Chem., 2020, 12 (19), P. 4911–4921.

28. Bukhtiyarov V.I., Kaichev V.V., Prosvirin I.P. X-Ray Photoelectron Spectroscopy as a Tool for in-Situ Study of the Mechanisms of Heterogeneous Catalytic Reactions. Top. Catal., 2005, 32 (1–2), P. 3–15.

29. Muscetta M., Andreozzi R., Clarizia L., Di Somma I., Marotta R. Hydrogen Production through Photoreforming Processes over Cu<sub>2</sub>O/TiO<sub>2</sub> Composite Materials : A Mini-Review. Int. J. Hydrogen Energy, 2020, 45 (53), P. 28531–28552.

30. Nishikiori H., Harata N., Yamaguchi S., Ishikawa T., Kondo H., Kikuchi A., Yamakami T., Teshima K. Formation of CuO on TiO<sub>2</sub> Surface Using Its Photocatalytic Activity. Catalysts, 2019, 9 (4), 383.

31. Segovia-Guzm´an M.O., Rom´an-Aguirre M., Verde-Gomez J.Y., Collins-Mart´ınez V.H., Zaragoza-Gal´an G., Ramos-S´anchez V.H. Green Cu<sub>2</sub>O/TiO<sub>2/sub> Heterojunction for Glycerol Photoreforming. Catal. Today, 2020, 349, P. 88–97.

32. Kurenkova A.Y., Kremneva A.M., Saraev A.A., Murzin V., Kozlova E.A., Kaichev V.V. Influence of Thermal Activation of Titania on Photoreactivity of Pt/TiO<sub>2</sub> in Hydrogen Production. Catal. Letters, 2021, 151, P. 748–754.

33. Speltini A., Scalabrini A., Maraschi F., Sturini M., Pisanu A., Malavasi L., Profumo A. Improved Photocatalytic H<sub>2</sub> Production Assisted by Aqueous Glucose Biomass by Oxidized g-C3N<sub>4</sub>. Int. J. Hydrogen Energy, 2018, 43 (32), P. 14925–14933.

34. Vaiano V., Iervolino G., Sarno G., Sannino D., Rizzo L., Murcia Mesa J. J., Hidalgo M.C., Nav´ıo J.A. Production Simultan´ee de CH<sub>4</sub> et H<sub>2</sub> Par R´eformage Photocatalytique d’une Solution Aqueuse de Glucose Sur Un Catalyseur Pd-TiO<sub>2</sub> Sulfat´e. Oil Gas Sci. Technol., 2015, 70 (5), P. 891–902.

35. Ding F., Yu H., Liu W., Zeng X., Li S., Chen L., Li B., Guo J., Wu C. Au-Pt Heterostructure Cocatalysts on g-C3N<sub>4</sub> for Enhanced H<sub>2</sub> Evolution from Photocatalytic Glucose Reforming. Mater. Des., 2024, 238, 112678.

36. Bellardita M., Garc´ıa-L´opez E. I., Marc`ı G., Nasillo G., Palmisano, L. Photocatalytic Solar Light H<sub>2</sub> Production by Aqueous Glucose Reforming. Eur. J. Inorg. Chem., 2018, 41, P. 4522–4532.

37. Zhao H., Ding X., Zhang B., Li Y., Wang C. Enhanced Photocatalytic Hydrogen Evolution along with Byproducts Suppressing over Z-Scheme CdxZn<sub>1-x</sub>S/Au/g-C<sub>3</sub>N<sub>4</sub> Photocatalysts under Visible Light. Sci. Bull., 2017, 62 (9), P. 602–609.

38. Kozlova E.A., Kurenkova A.Y., Gerasimov E.Y., Gromov N.V., Medvedeva T.B., Saraev A.A., Kaichev V.V. Comparative Study of Photoreforming of Glycerol on Pt/TiO<sub>2</sub> and CuO<sub>x</sub>/TiO<sub>2</sub> Photocatalysts under UV Light. Mater. Lett., 2021, 283, 128901.


Review

For citations:


Kharina S.N., Kurenkova A.Yu., Saraev A.A., Gerasimov E.Yu., Kozlova E.A. Copper-modified g-C3N4/TiO2 nanostructured photocatalysts for H2 evolution from glucose aqueous solution. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(3):388-397. https://doi.org/10.17586/2220-8054-2024-15-3-388-397

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)