Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Influence of synthesis temperature on BiFeO3 nanoparticles formation

Abstract

The mechanism of BiFeO3 nanoparticle formation from initial compositions obtained by bismuth and iron hydroxides coprecipitation has been studied. The activation temperature of the BiFeO3 nucleation and nanocrystal growth is shown to correlate with that of the nonautonomous phase’s melting. The optimal temperature range during nanoparticle formation by the method in question was found to be between 460–520(40) оC.

About the Authors

N. A. Lomanova
Ioffe Physical Technical Institute
Russian Federation

26 Polytekhnicheskaya Str., St. Petersburg 194021



V. V. Gusarov
Ioffe Physical Technical Institute; St. Petersburg State Technological Institute (Technical University)
Russian Federation

St. Petersburg 194021

26 Moskovsky Ave., St. Petersburg, 190013



References

1. G.A. Smolenskii, V.A. Isupov, Ferroelectromagnets. PhysicsUspekhi, 137, P. 415–435 (1982).

2. J. Wang, J. B. Neaton, et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science, 299, P. 1719– 1722 (2003).

3. Y.P. Wang, G.L. Yuan, et al. Electrical and magnetic properties of singlephased and highly resistive ferroelectromagnet BiFeO3 ceramic. J. Phys. D: Appl. Phys, 39, P. 2019–2023 (2006).

4. T. Choi, S. Lee, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324, P. 63–68 (2009).

5. S.Y. Yang, L.W. Martin, et al. Photovoltaic effects in BiFeO3. Appl. Phys. Lett., 95, P. 062909 (2009).

6. H.T. Yi, T. Choi, et al. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater., 23, P. 3403–3408 (2011).

7. A.P. Pyatakov, A. K. Zvezdin. Magnetoelectric and multiferroic media. PhysicsUspekhi, 55, P. 557–581 (2012).

8. S. Li, R. Nechache, C. Harnagea, L. Nikolova, F. Rosei. Singlecrystalline BiFeO3 nanowires and their ferroelectric behavior. Appl. Phys Lett., 101, P. 192903–192908 (2012).

9. H.W. Chang, F.T. Yuan, et al. Photovoltaic property of sputtered BiFeO3 thin films. J. All. Comp., 574, P. 402–406 (2013).

10. N.A. Lomanova, V.V. Gusarov. On the limiting thickness of the Perovskitelike block in the Aurivillius phases in the Bi2O3–Fe2O3–TiO2 system. Nanosystems: Physics, Chemistry, Mathematics, 2(3), P. 93–101 (2011).

11. Z. Li, Y. Shen, et al. Significant enhancement in the visible light photocatalytic properties of BiFeO3–graphene nanohybrids. J. Mater. Chem. A, 1, P. 823–829 (2013).

12. J. Silva, A. Reayes, et al. BiFeO3: A Review on Synthesis, Doping and Crystal Structure. Integrated Ferroelectrics, 126, P. 47–59 (2011).

13. J. Lu, L.J. Qiao, P.Z. Fu, Y.C. Wu. Phase equilibrium of Bi2O3–Fe2O3 pseudobinary system and growth of BiFeO3 single crystal. J. Cryst. Grow, 318, P. 936–941 (2011).

14. A. Maitre, M. Francois, J.C. Gachon. Experimental study of the Bi2O3–Fe2O3 pseudobinary system. J. Phase Equilibria and Diffusion, 25, P. 59–67 (2004).

15. R. Haumont, R. SaintMartin, C. Byl. Centimetersize BiFeO3 single crystals grown by flux method. Phase Transitions, 81, P. 881–888 (2008).

16. R. Palai, R. S. Katiyar, et al. phase and metalinsulator transition in multiferroic BiFeO3. Phys. Rev. B, 77, P. 014110.1–01410.11 (2008).

17. E.I. Speranskaya, V.M. Skorikov, E.Ya. Rode, V.A. Terekhova. The phase diagram of the system Bi2O3– Fe2O3. Izv. Bull. Acad. Sci. USSR, Div Chem. Sci., 5, P. 905–906 (1965).

18. M.I. Morozov, N.A. Lomanova, V.V. Gusarov. Specific Features of BiFeO3 Formation in a mixture of bismuth(III) and iron(III) oxides. Russ. J. Gen. Chem., 73, P. 1676–1680 (2003).

19. M. Valant, A.K. Axelsson, N. Alford. Peculiarities of a SolidState Synthesis of Multiferroic Polycrystalline BiFeO3. Chem. Mater., 19, P. 5431–5436 (2007).

20. S.M. Selbach, M.A. Einarsrud, T. Grande. On the Thermodynamic Stability of BiFeO3. Chem. Mater., 21, P. 169–173 (2009).

21. S. Phapale, R. Mishra, D. Das. Standard enthalpy of formation and heat capacity of compounds in the pseudobinary Bi2O3–Fe2O3 system. J. Nuclear Mater., 373, P. 137–141 (2008).

22. A.V. Mikhailov, A. R. Kaul, et al. Mass spectrometric investigation of vaporization in the Bi2O3–Fe2O3 system. Russ. J. Phys. Chem. A, 85, P. 26–30 (2011).

23. M.S. Bernardo, T. Jardiel, et al. Sintering and microstuctural characterization of W6+, Nb5+ and Ti4+ ironsubstituted BiFeO3. J. Eur. Cer. Soc., 31, P. 3047–3053 (2011).

24. A.V. Egorisheva, T.B. Kuvshinova, et al. Synthesis of high nanocrystalline BiFeO3. Inorgan. Mater., 49, P. 316–320 (2013).

25. A.V. Egorisheva, T.B. Kuvshinova, et al. Mechanochemical activation of the starting components for the solid phase synthesis of BiFeO3. Inorgan. Mater., 49, P. 308–315 (2013).

26. S. Das, S. Basu. Solvothermal synthesis of nanotosubmicrometer sized BiFeO3 and BiFeoxides with various morphologies. J. Nanosci. Nanotechnol., 9, P. 5622–562 (2009).

27. J.H. Xu, H. Ke, et al. Lowtemperature synthesis of BiFeO3 nanopowders via a sol–gel method. J. All. Comp., 472, P. 473–477 (2009).

28. B. Liu, B. Hu, Z. Du. Hydrothermal synthesis and magnetic properties of singlecrystalline BiFeO3 nanowires. China Chem. Comm., 47, P. 8166–8168 (2011).

29. J. Yang, X. Li, et al. Factors controlling purephase magnetic BiFeO3 powders synthesized by solution combustion synthesis. J. All. Comp., 509, P. 9271–9277 (2011).

30. D. Maurya, H. Thota, K. S. Nalwa, A. Garg. BiFeO3 ceramics synthesized by mechanical activation assisted versus conventional solidstatereaction process: A comparative study. J. All. Comp., 477, P. 780–784 (2009).

31. M.M. Rashad. Effect of synthesis conditions on the preparation of BiFeO3 nanopowders using two different methods. J. Mat. Sci.: Materials in Electronics, 23, P. 882–888 (2012).

32. A. Chaudhuri, S. Mitra, M. Mandal, K. Mandal. Nanostructured bismuth ferrites synthesized by solvothermal process. J. All. Comp., 491, P. 703–706 (2010). [33] M. Popa, D. Crespo, J.M. CalderonMoreno,

33. S.F. Preda. Synthesis and Structural Characterization of SinglePhase BiFeO3 Powders from a Polymeric Precursor. J. Am. Cer. Soc., 90, P. 2723–2727 (2007).

34. A. Hardy, S. Gielis, et al. Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. J. Eur. Cer. Soc., 29, P. 3007–3013 (2009).

35. Sh. Shetty, V. R. Palkar, R. Pinto. Size effect study in magnetoelectric BiFeO3 system. J. Phys., 58, P. 1027–1030 (2002).

36. J.H. Xu, H. Ke, et al. Factors controlling purephase multiferroic BiFeO3 powders synthesized by chemical coprecipitation. J. All. Comp., 472, P. 473–477 (2009).

37. J. PradoGonjal, M.E. VillafuerteCastrejorn, L. Fuentes, E. Morarn. Microwave–hydrothermal synthesis of the multiferroic BiFeO3. Mat. Res. Bull., 44, P. 1734–1737 (2009).

38. V. Kothai, R. Rajeev. Synthesis of BiFeO3 by carbonate precipitation. Bull. Mat. Sci., 35, P. 157–161 (2012).

39. B. Jurca, C. Paraschiv, A. Ianculescu, O. Carp. Thermal behaviour of the system Fe(NO3)39H2O– Bi5O(OH)9(NO3)49H2O–glycine/urea and of their generated oxides (BiFeO3). J Therm. Anal. Calor., 97, P. 91–98 (2009).

40. Quantitative analysis code. Registration certificate No. 2000611264 of 06.12.2000. PDWin4.0. bundled software, “Burevestnik” Scientific and Production Association. St. Petersburg. 2004 24.

41. T. Misawa, K. Hashimoto, S. Shimodaira. The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci., 14, P. 131–135 (1974).

42. V.M. Denisov, N.V. Belousova, et al. Oxide compounds of Bi2O3–Fe2O3 system I. The obtaining and phase equilibriums. J. Siberian Federal University. Chemistry, 5, P. 146–167 (2012).

43. J.G. Dash. Surface melting. Contemp. Phys., 30, P. 89–100 (1989).

44. V.V. Gusarov, S.A. Suvorov. Meltingpoints of locally equilibrium surface phases in polycrystalline systems based on a single volume phase. Journal of Applied Chemistry of the USSR, 63(8), P. 1560–1565 (1990).

45. V.V. Gusarov. The thermal effect of melting in polycrystalline systems. Thermochimica Acta. 256, P. 467–472 (1995).

46. V.V. Gusarov, I.Yu. Popov. Flows in twodimensional nonautonomous phases in polycrystalline systems. Nuovo Cimento della Societa Italiana di Fisica. D, 18(7), P. 799–805 (1996).

47. V.V. Gusarov. Fast solidphase chemical reactions. Russian Journal of General Chemistry, 67(12), P. 1846– 1851 (1997).


Review

For citations:


Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(5):696–705.

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)