Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The effect of fullerene C60 on mechanical and dielectrical behavior of epoxy resins at low loading

Abstract

Fullerene C60 / epoxy polymers nanocomposites with different C60 loadings (0.01-0.12 wt.%) have been prepared. Mechanical testing shows that compared with the neat epoxy, the mechanical and toughening properties of the composites are greatly improved. The addition of fullerene C60 increased the modulus of the epoxy (up to 20 %), but the glass transition temperature was unaffected. The measured impact strength was also increased, from 38 to 115 kJ/m2 with the addition of 0.12 wt.% of fullerene C60. The toughening mechanism has been discussed. Dielectric spectroscopy was used to investigate the influence of nanoparticles on the relaxation processes in the polymer matrix.

About the Authors

D. V. Pikhurov
National Research University of Information Technologies, Mechanics and Optics
Russian Federation

49, Kronverkskiy pr., 197101 Saint Petersburg.



V. V. Zuev
National Research University of Information Technologies, Mechanics and Optics; Institute of Macromolecular Compounds of the Russian Academy of Sciences
Russian Federation

49, Kronverkskiy pr., 197101 Saint Petersburg;

31, Bolshoi pr., 199004 Saint Petersburg.



References

1. Leng J., Lau A.K.T. Multifunctional polymer nanocomposites. CNC Press,N-Y., 2011, 560 p.

2. Wichmann M., Schulte K., Wagner H.D. On nanocomposites toughness. Compos. Sci. Technol., 68, P. 329–331 (2008).

3. Roscher C. Tiny particles, huge effect: radiation curable silica nanocomposites for scratch and abrasion resistant coatings. Eur. Coat. J., 4, P. 131–141 (2003).

4. Prato M. [60]Fullerene chemistry for material science applications. J. Mat. Chem., 7, P. 1097–1109 (1997).

5. Hsich T.H., Kinloch A.J., et al. The mechanisms and mechanics of the toughening of epoxy polymer modified with silica nanoparticles. Polymer, 51, P. 6284–6294 (2010).

6. Gersappe D. Molecular mechanisms of failure in polymer nanocomposites. Phys. Rev. Lett., 89, P. 058301 (2002).

7. Adachi K., Kotaka T. Dielectric normal mode relaxation. Progr. Polym. Sci., 18, P. 585–622 (1993).

8. ISO-527-1. Plastics – Determination of tensile properties – Part 1: general principles. Geneva. International Standard Organisation (1993).

9. ISO-527-2. Plastics – Determination of tensile properties – Part 2: test conditions for moulding and extrusion plastics. Geneva. International Standard Organisation (1993).

10. Miller G.P. Reactions between aliphatic amines and [60]fullerene: a review. Compt. Rend. Chem., 9, P. 952– 959 (2006).

11. Ogasawa T., Ishida Y., Kasai T. Mechanical properties of carbon fiber/ fullerene dispersed epoxy composites. Comp. Sci. Technol., 69, P. 2002–2008 (2009).

12. Rafiee M.A., Yavari F., Rafiee J., Koratkar N. Fullerene- epoxy nanocomposites – enhanced mechanical properties at low nanofiller loading. J. Nanopart. Res., 13, P. 721–731 (2011).

13. Zhang W., Picu R.C., Koratkar N. Suppression of fatigue crack growth in carbon nanotube composites. Appl. Phys. Lett., 91, P. 193109 (2007).

14. Kinloch A.J., Mohammed R., et al. The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J. Mat. Sci., 40, P. 5083–5086 (2005).

15. Hsich T.H., Kinloch A.J., Taylor A.C., Kinloch I.A. The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J. Mat. Sci., 46, P. 7525–7535 (2011).

16. Dittanet P., Pearson R.A. Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer, 53, P. 1890–1905 (2012).

17. Kinloch A., Taylor A. The toughening of cyanate-ester polymers: part 1. Physical modification using particles, fibers and woven-mats. J. Mat. Sci., 37, P. 433–466 (2002).

18. Zhu J., Kim J., et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett., 3, P. 1107–1113 (2003).

19. Wetzel B., Rosso P., Haupert F., Friedrich K. Epoxy composites fracture and toughening Mechanisms. Eng. Fract. Mech., 73, P. 2375–2398 (2006).

20. Blackman B.R.K., Kinloch A.J., et al. The fracture and fatigue behaviour of nano-modified epoxy polymers. J. Mat. Sci., 42, P. 7049–7051 (2007).

21. Zerda A.S., Lesser A.J. Intercalated clay nanocomposites: Morphology, mechanics, and fracture behavior. J. Polym. Sci. B: Polym. Phys., 39, P. 1137–1146 (2001).

22. Wang K., Chen L., et al. Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules, 38, P. 788–800 (2005).

23. Liu W., Hoa S.V., Pugh M. Fracture toughness and water uptake of high-performance epoxy/ nanoclay nanocomposites. Comp. Sci. Technol., 65, P. 2364–2373 (2005).

24. Nikonorova N.A., Diaz-Calleja R., Yakimansky A. Molecular mobility in comb-like copolymethacrylates with chalcone-containing side-chains. Polym. Int., 60, P. 1215–1221 (2011).

25. Boyer R.F. Dependence of mechanical properties on molecular motion in polymers. Polym. Eng. Sci., 8, P. 161–185 (1968).


Review

For citations:


Pikhurov D.V., Zuev V.V. The effect of fullerene C60 on mechanical and dielectrical behavior of epoxy resins at low loading. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(6):834-843.

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)