Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Nanocrystalline perovskite-like oxides formation in Ln2O3 – Fe2O3 – H2O (Ln = La, Gd) systems

Abstract

   Nanocrystalline LnFeO3 (Ln = La, Gd) ferrites have been prepared by the co-precipitation method followed by heat treatment in air. The formation mechanisms for LaFeO3 and GdFeO3 in Ln2O3 – Fe2O3 – H2O (Ln = La, Gd) systems under the mentioned conditions are investigated. The phase interaction scheme, reflecting ways which lead to the target, synthesis product yield, as well as the common tendency of LaFeO3 and GdFeO3 formation mechanisms, are constructed. The mean sizes of coherent scattering regions of LaFeOand GdFeO3 were determined to be 30 ± 3 and 40 ± 4 nm, respectively.

About the Authors

E. A. Tugova
Ioffe Physical Technical Institute of RAS
Russian Federation

Saint Petersburg



O. N. Karpov
Ioffe Physical Technical Institute of RAS
Russian Federation

Saint Petersburg



References

1. Tugova E.A., Zvereva I.A. Formation mechanism of GdFeO<sub>3</sub> nanoparticles under the hydrothermal conditions. Nanosystems: physics, chemistry, mathematics, 4(6), P. 851–856 (2013).

2. Nakayama S. LaFeO<sub>3</sub> perovskite type oxide prepared by oxide mixing co-precipitation and complex synthesis methods. J. Mater. Sci., 6, P. 5643–5648 (2001).

3. Tang P., Chen H., Cao F., Pan G. Magnetically recoverable and visible light driven nanocrystalline YFeO<sub>3</sub> photocatalysts. Catal. Sci. Technol., 1(7), P. 1145–1148 (2011).

4. Nguyen A.T., Mittova I.Ya., Al’myasheva O.V. Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions. Russ. J. Appl. Chem., 82(11), P. 1915–1918 (2009).

5. Nguyen A.T., Mittova I.Ya., Almjasheva O.V., Kirillova S.A., Gusarov V.V. Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite. Glas. Phys. Chem., 34(6), P. 756–761 (2008).

6. Shang M., Zhang C., Zhang T., Yuan L., Ge L. Yuan H., Feng S. The multiferroic perovskite YFeO<sub>3</sub>. Appl. Phys. Lett., 102(6), 062903(3 pages) (2013).

7. Zhou Z., Guo L., Yang H., Liu Q., Ye F. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd, 583, P. 21–31 (2014).

8. Tang P., Sun H., Chen H., Cao F. Hydrothermal processing-assisted synthesis of nanocrystalline YFeO<sub>3</sub> and its visible-light photocatalytic activity. Curr. Nanosci., 8, P. 64–67 (2012).

9. Nguyen A.T., Almjasheva O.V., Mittova I.Ya., Stognei O.V., Soldatenko S.A. Synthesis and magnetic properties of YFeO<sub>3</sub> nanocrystals. Inorganic Materials, 45(11), P. 1304–1308 (2009).

10. Zhang Yu., Yang J., Xu J., Gao Q., Hong Zh. Controllable synthesis of hexagonal and orthorhombic YFeO<sub>3</sub> and their visible-light photocatalytic activities. Materials Letters, 81, P. 1–4 (2012).

11. Maiti R., Basu S., Chakravorty D. Synthesis of nanocrystalline YFeO<sub>3</sub> and its magnetic properties. Journal of Magnetism and Magnetic Materials, 321(19), P. 3274–3277 (2009).

12. Venugopalan A., Appasamy M., Saravanan S., Kothandaraman K., Kothandaraman J. Structural, electrical and magnetic studies on Y-Fe-O system. Journal of Rare Earths, 27(6), P. 1013–1017 (2009).

13. Lu X., Xie J., Shu H., Liu J., Yin Ch., Lin J. Microwave-assisted synthesis of nanocrystalline YFeO<sub>3</sub> and study of its photoactivity. Materials Science and Engineering B, 138, P. 289–292 (2007).

14. Zhang W., Fang C.X, Yin W.H, Zeng Y.W. One-step synthesis of yttrium orthoferrite nanocrystals via sol-gel auto-combustion and their structural and magnetic characteristics. Mater. Chem. Phys., 137(3), P. 877–883 (2013).

15. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO<sub>3</sub> nanopowders formation under glycine-nitrate combustion conditions. Russian Journal of Applied Chemistry, 87(2), P. 167–171 (2014).

16. Goswami S., Bhattacharya D., Choudhury P. Particle size dependence on magnetization and noncentrosymmetry in nanoscale BiFeO<sub>3</sub>. Journal of applied physics D, 109(7), P. 737–739 (2011).

17. Egorysheva A.V., Volodin V.D., Ellert O.G., Efimov N.N., Skorikov V.M., Baranchikov A.E., Novotortsev V.M. Mechanochemical activation of starting oxide mixtures for solid-state synthesis of BiFeO<sub>3</sub>. Inorganic Materials, 49(3), P. 303–309 (2013).

18. Morozov M. I., Lomanova N. A., Gusarov V.V. Specific features of BiFeO<sub>3</sub> formation in a mixture of bismuth (III) and iron (III) oxides. Russ. J. Gen. Chem., 73(11), P. 1772–1776 (2003).

19. Lomanova N.A., Gusarov V.V. Effect of surface melting on the formation and growth of nanocrystals in the Bi<sub>2</sub>O<sub>3</sub>-Fe<sub>2</sub>O<sub>3</sub> system. Russ. J. Gen. Chem., 83(12), P. 2251–2253 (2013).

20. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO<sub>3</sub> nanoparticles formation. Nanosystems: physics, chemistry, mathematics, 4(5), P. 696–705 (2013).

21. Tretyakov Yu. D., Lukashin A.V., Eliseev A. A. Synthesis of functional nanocomposites based on solid-phase nanoreactors. Russian Chemical Reviews, 73(9), P. 899–923 (2004).

22. Gusarov V.V. Fast solid-phase chemical reactions. Russian Journal of General Chemistry, 67(12), P. 1846–1851 (1997).

23. Schaak R.E., Mallouk Th. E. Perovskites by design: A toolbox of solid-state reactions. Chemistry of Materials, 14, P. 1455–1471 (2002).

24. Livage J. Vanadium pentoxide gels. Chemistry of Materials, 3(4), P. 578–593 (1991).

25. Sanchez C., Rozes L., Ribot F., Laberty-Robert C., Grosso D., Sassoye C., Boissiere C., Nicole L. “Chimie douce”: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13(1-2), P. 3–39 (2010).

26. Gopalakrishnan J. Chimie. Douce approaches to the synthesis of metastable oxide materials. Chemistry of Materials, 7(7), P. 1265–1275 (1995).

27. Shafer M.W., Roy R. Rare-earth polymorphism and phase equilibria in rare-earth oxide-water systems. Journal of the American Ceramic Society, 42(4), P. 563–570 (1959).

28. Chang Ch, Mao D. Thermal dehydration kinetics of a rare earth hydroxide Gd(OH)<sub>3</sub>. International Journal of Chemical Kinetics, 39(2), P. 75–81. (2007)

29. Tareen J.A.K., Krishnamurthy K.V. Hydrothermal stability of hematite and magnetite. Bulletin Materials Science, 3(1), P. 9–13 (1981).

30. Popov, V.V., Gorbunov, A.I. Hydrothermal Crystallization of iron (III) hydroxide. Inorg. Materials, 42(3), P. 275–281 (2006).

31. Xu H., Hu X., Zhang L. Generalized low-temperature synthesis of nanocrystalline rare earth orthoferrites LnFeO<sub>3</sub> (Ln=La, Pr, Nd, Sm, Eu, Gd). Cryst. Growth Des., 8(7), P. 2061–2065 (2008).

32. S¨oderlind S., Fortin M.A, Petoral Jr R.M., Klasson A., Veres T., Engstr¨om M., Uvdal K., K¨all P.-O. Colloidal synthesis and characterization of ultrasmall perovskite GdFeO<sub>3</sub> nanocrystals. Nanotechnology, 19(8), P. 085608-(8pp) (2008).

33. Tugova E.A. A comparative analysis of the formation processes of Ruddlesden-Popper phases in the La<sub>2</sub>O<sub>3</sub>-SrO-M<sub>2</sub>O<sub>3</sub> (M = Al, Fe) systems. Glas. Phys. Chem, 35(4), P. 416–422 (2009).

34. Bernal S., Blanco G., Gatica J.M., Perez-Omil J.A., Pintado J.M., Vidal H. Chemical reactivity of binary rare earth oxides. Binary Rare Earth Oxides, Kluwer Academic Publishers, P. 9–55 (2004).

35. Sheu H. Sh., Shih W.-J., Chuang W.-T., Li I.-F., Yeh Ch.-Sh. Crystal structure and phase transitions of Gd(CO<sub>3</sub>)OH studied by synchrotron powder diffraction. Journal of the Chinese Chemical Society, 57(4), P. 938–945 (2010


Review

For citations:


Tugova E.A., Karpov O.N. Nanocrystalline perovskite-like oxides formation in Ln2O3 – Fe2O3 – H2O (Ln = La, Gd) systems. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(6):854-860.

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)