Photonic crystal with negative index material layers
Abstract
We consider the one-dimensional photonic crystal composed of an infinite number of parallel alternating layers filled with a metamaterial and vacuum. We assume the metamaterial is an isotropic, homogeneous, dispersive and non-absorptive medium. We use a single Lorentz contribution and assume the permittivity and permeability are equal. Using the time and coordinate Fourier transforms and the Floquet-Bloch theorem, we obtain systems of equations for TE and TM modes, which ones are identical. We consider radiative and evanescent regimes for the metamaterial and vacuum layers and find sets of frequencies, where the metamaterial has the positive or negative refractive index. We use a numerical approach. As a result, we obtained the photonic band gap structure for different frequency intervals and ascertain how it changes with modification of the system parameters. We observe the non-reflection effect for any directions for a certain frequency but this fails with the layer width modification.
About the Authors
K. V. PravdinRussian Federation
Saint Petersburg
I. Yu. Popov
Russian Federation
Saint Petersburg
References
1. P. Vukusic, J.R. Sambles. Photonic structures in biology. Nature, 424, P. 852–855 (2003).
2. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 58, P. 2059–2062 (1987).
3. S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, P. 2486–2489 (1987).
4. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, second edition, 286 p. (2008).
5. K. Sakuda. Optical Properties of Photonic Crystals. Springer-Verlag, Berlin, second edition, 253 p. (2005).
6. Y. Fink, J.N. Winn, S. Fan, J. Michel, C. Chen, J.D. Joannopoulos, E.L. Thomas. A dielectric omnidirectional reflector. Science, 282, P. 1679–1682 (1998).
7. J.M. Dudley, J.R. Taylor. Ten years of nonlinear optics in photonic crystal fibre. Nat. Phot., 3, P. 85–90 (2009).
8. J. Rosenberg, R.V. Shenoi, S. Krishna, O. Painter. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. Opt. Exp., 18, P. 3672–3686 (2010).
9. A.M.R. Pinto, M. Lopez-Amo. Photonic Crystal Fibers for Sensing Applications. Journal of Sensors, 2012, P. 598178-21 (2012).
10. A.C. Liapis, Z. Shi, R.W. Boyd. Optimizing photonic crystal waveguides for on-chip spectroscopic applications. Opt. Exp., 21, P. 10160–10165 (2013).
11. H. Altug. PhD Dissertation, Stanford University, Stanford, 120 p. (2006).
12. V.G. Veselago. The electrodynamics of substances with simultaneously negative values of ε and µ. Sov. Phys. Usp., 10, P. 509–514 (1968).
13. J.B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 85, P. 3966–3969 (2000).
14. L. Wu, S. He, L. Shen. Band structure for a one-dimensional photonic crystal containing left handed materials. Phys. Rev. B, 67, P. 235103–10 (2003).
15. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, S. Zhu. Properties of one dimensional photonic crystals containing single-negative materials. Phys. Rev. E, 69, P. 066607-10 (2004).
16. D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J.P. Vigneron, E.H. El Boudouti, A. Nougaoui. Band structure and omni directional photonic band gaps in lamellar structure with left handed materials. Phys. Rev. E, 69, P. 066613-12 (2005).
17. S. K. Singh, J.P. Pandey, K.B. Thapa, S.P. Ojha. Structural parameters in the formation of omnidirectional high reflectors. PIER, 70, P. 53–78 (2007).
18. C. Nicolae, R.M. Osgood, Jr.S. Zhang, S.R.T. Brueck. Zero-n bandgap in photonic crystal superlattices. J. Opt. Soc. Am. B, 23, P. 506–512 (2006).
19. H. Jiang, H. Chen, S. Zhu. Localized gap-edge fields of one-dimensional photonic crystals with an ε-negative and a µ-negative defect. Phys. Rev. E, 79, P. 0466601-8 (2006).
20. G.N. Pandey, K.B. Thapa, S.K. Srivastava, S.P. Ojha. Band structures and abnormal behavior of one dimensional photonic crystal containing negative index materials. PIER M, 2, P. 15–36 (2008).
21. X. Feng, H. Li. Enlargement of the omnidirectional reflectance gap in one-dimensional photonic crystal heterostructure containing double negative index material. Eur. Phys. J. D, 67, P. 40157-7 (2013).
22. A. Tip. Linear dispersive dielectrics as limits of Drude-Lorentz systems. Phys. Rev. E, 69, P. 016610-5 (2004).
23. B. Gralak, A. Tip. Macroscopic Maxwell’s equations and negative index materials. J. Math. Phys., 51, P. 052902-28 (2010).
24. G. Floquet. Sur les ´equations diff´erentielles lin´eaires ´a coefficients p´eriodiques. Ann. Ecole Norm. Sup., 12, P. 47–88 (1883).
25. F. Bloch. ¨Uber die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys., 52, P. 555–600 (1929).
26. L. Novotny, B. Hecht. Principles of Nano-Optics. Cambridge University Press, New York, 539 p. (2006).
27. K. Pravdin, I. Popov. Point source in the layered medium with metamaterials: method of recurrent relations. Sc. Tech. J. Inf. Tech. Mech. Opt., 91, P. 11–17 (2014).
28. K.V. Pravdin, I.Yu. Popov. Model of the interaction of point source electromagnetic fields with metamaterials. Nanosystems: Phys. Chem. Math., 4, P. 570–576 (2013).
Review
For citations:
Pravdin K.V., Popov I.Yu. Photonic crystal with negative index material layers. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5):626-643.