Thermal expansion coefficient for copper nanoclusters by molecular-dynamic method
Abstract
In the work it is carried out the molecular-dynamic research of thermal expansion linear coefficient (TLC) for copper nanoclusters of spherical and cubic shapes in the wide range of size. To this purposes the heating of nanocluster was carried out by stochastic forces method. The calculation of number of characteristics was made in certain time steps number. In particularly it were computed the linear sizes of nanostructeure under investigation, its volume, the system temperature. Further the magnitudes of TLC were obtained by known expressions with the help of interpolation; the TLC dependences on nanostructure size were plotted. It was shown that the TLC depends on both nanostructure size and nanostructure shape.
About the Authors
E. I GolovnevaRussian Federation
Senior staff scientist, Doctor
Novosibirsk
I. F. Golovnev
Russian Federation
Senior staff scientist, Doctor
Novosibirsk
V. M. Fomin
Russian Federation
Director, Academician of RAS
Novosibirsk
References
1. Sekkal W., Bouhafs B., Aourag H., Certier M. Molecular-dynamics simulation of structural and thermodynamic properties of boron nitrid // J. Phys. Condens. Matter. — 1998. — V. 10. — P. 4975–4984.
2. Moon Won Ha, Hwang Ho Jung. Structural and thermodynamical properties of GaN: a molecular dynamics simulation // Physics Letters A. — 2003. — V. 315. — P. 319–324.
3. Berroukche A., Soudini B., Amara K. Molecular dynamics simulation study of structural, elastic and thermodynamic properties of tin below 286 K // Int. J. Nanoelectronics and Materials. — 2008. — V. 1. — P. 41–51.
4. Губернаторов В.В., Сычева Т.С., Романов Е.П., Владимиров Л.Р. Роль теплового расширения фаз в процессе кристаллизации и рекристаллизации металлов // Докл. акад. наук. — 2007. — T. 413, № 1. — C. 41–44.
5. Гельд П.В., Сидоренко Ф.А. Силициды переходных металлов четвертого периода. — М.: Металлургия, 1971. — 582 с.
6. Foiles S.M. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method // Phys. Rev. B.. — 1985. — V. 32. — P. 7685–7693.
7. Foiles S.M., Baskes M.I., Daw M.S. Embedded-atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys // Phys. Rev. B. — 1986. — V. 33. — P. 7983–7991.
8. Rose J.H., Smith J.R., Guinea F., Ferrante J. Universal features of the equation of state of metals // Phys. Rev. B. — 1984. — V. 29. — P. 2963–2969.
9. Garrison B.J., Srivastava D. Potential energy surfaces for chemical reactions at solid surfaces // Annu. Rev. Phys. Chem. — 1995. — V. 46. — P. 373-394.
10. Jacobsen K.W., Norskov J.K., Puska M.J. Interatomic interactions in the effective-medium theory // Phys. Rev. B. — 1987. — V. 35. — P. 7423–7442.
11. Voter A.F. Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, and Al. Los Alamos Unclassified Technical Report // LA-UR-93-3901, 1993. — 9 p.
12. Allen M.P., Tildesley D.J. Computer simulation of liquids. — Oxford, N.Y.: Clarendon Press, 1987. — 385 p.
13. Golovnev I.F., Golovneva E.I., Fomin V.M. Simulation of quasi-static processes in the crystals by molecular dynamics method // Physical mesomehanics. — 2003. — V. 6, № 5-6. — P. 41–45.
14. Bolesta A.V., Golovnev I.F., Fomin V.M. Contact melting of nickel cluster at collision with rigid wall // Physical mesomehanics. — 2001. — V. 4, № 1. — P. 5–10.
15. Колмогоров А.Н. Теория вероятностей и математическая статистика. — М.: Наука, 1986. — 534 с.
Review
For citations:
Golovneva E.I., Golovnev I.F., Fomin V.M. Thermal expansion coefficient for copper nanoclusters by molecular-dynamic method. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(3):71-78. (In Russ.)