Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The modeling of SiC phases on basis of nanostructures

Abstract

The classification scheme and modeling method of formation of silicon carbide phases on basis of nanostructures was offered. The geometrically optimized structure of silicon carbide clusters was calculated by molecular mechanics methods and semiempirical quantum-mechanical methods; the structural parameters and some properties, such as density and energy of sublimation were defined. It was established that twenty silicon carbide phases can exist. The structure of seventeen of them was featured for the first time for silicon carbide.

About the Authors

E. A. Belenkov
Chelyabinsk State University
Russian Federation

Professor, Doctor of Science

Chelyabinsk



E. N. Agalyamova
Chelyabinsk State University
Russian Federation

Post-graduate student

Chelyabinsk



V. A. Greshnyakov
Chelyabinsk State University
Russian Federation

Post-graduate student

Chelyabinsk



References

1. Грешняков В.А., Беленков Е.А. Структура алмазоподобных фаз // ЖТФ. — 2011. — Т. 139, №6. В печати.

2. Гнесин Г.Г. Карбидкремниевые материалы. — М.: Металлургия, 1977. — 216 c.

3. Олейник Г.С., Даниленко Н.В. Политипообразование в неметаллических веществах // Успехи химии. — 1997. — T. 66. — C. 615–640.

4. Верма А., Кришна П. Полиморфизм и политипизм в кристаллах. — М.: Мир, 1969. — 274 с.

5. Урусов В.С. Теоретическая кристаллохимия. — М.: МГУ, 1987. — 272 c.

6. Лебедев A.A., Сбруев C.Б. SiC-электроника: прошлое, настоящее, будущее // Электроника: Наука, Технология, Бизнес. — 2006. — 9(5). — C. 28–41.

7. Aust R. B. Carbon: a new crystalline phase // Science. — 1963. — V. 140. — P. 817–819.

8. Burdett J. K. The moments method and elemental structures // J. Am. Chem. Soc. — 1982. — V. 107. — C. 3063–3082.

9. Baughman R.H. Tubulanes: carbon phases based on cross-linked fullerene tubules // Chem. Phys. Lett. — 1993. — V. 211, No. 1. — C. 110–118.

10. Schultz P. A. Small rings and amorphous tetrahedral carbon // Phys. Rev. B. — 1999. — V. 59, No. 2. — C. 733–741.

11. Domingos H.S. Carbon allotropes and strong nanotube bundles // J. Phys. Condens. Matter, 2004, V. 16, 9083-9091.

12. Matsubara M., Mossobrio C. Bonding behavior and thermal stability of C54Si6: A first-principles molecular dynamics study // J. Chem. Phys. — 2005. — V. 122. — 084304–084311.

13. Matsubara M., Mossobrio C. Stable highly doped C60−𝑚Si𝑚 heterofullerenes: A first principles study of C40Si20, C36Si24, and C30Si30// J. Phys. Chem. A. — 2005. — V. 109. — C. 4415–4418.

14. Shen G., Tang K., Qian Y. Assembly of carbide nanostructures at low temperature // Int. J. Nanotechnol. — 2004. — V. 1. — C. 366–378.

15. Покропивный В.В., Овсянникова Л. И. Электронная структура, ИК- и рамановские спектры полупроводниковых кластеров C24, B12N12, Si12C12, Zn12O12, Ga12N12 // ФТТ. — 2007. — Т. 49, № 3. — C. 535–542.

16. Покропивный В.В., Овсянникова Л. И. Электронная структура кристаллообразующих фуллеренов C2𝑛, фулсиценов Si𝑛C𝑛 и кристаллов из них — фулсиценитов // ФТТ. — 2009. — Т. 51, № 10. — C. 2070–2077.

17. Allinger N.L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms // J. Am. Chem. Soc. — 1977. — V. 99(25). — P. 8127-8134.

18. Stewart J.J.P. Optimization of parameters for semiempirical methods I. Method // J. Comput. Chem. — 1989. — V. 10. — P. 209-220.

19. Stewart J.J.P. Optimization of parameters for semiempirical methods II. Applications // J. Comput. Chem. — 1989. — V. 10. — P. 221-264.


Review

For citations:


Belenkov E.A., Agalyamova E.N., Greshnyakov V.A. The modeling of SiC phases on basis of nanostructures. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(3):79-92. (In Russ.)

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)