Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Electrochemical methods of synthesis of hyperbolic metamaterials

Abstract

Metamaterials are artificially created structures owning electromagnetic characteristics typical of traditional materials. The most promising metamaterials are hyperbolic media. Such systems are uniaxial materials with different signs of major components of the dielectric constant. Successful realization of such materials in optical frequency range is a metal nanowire medium formed in porous dielectric matrices by filling them with metal. The review considers the creation processes of dielectrics matrices with an ordered structure based on Al2O3 fabricated by means of anodization and filling of these matrices with various metals by electrochemical methods.

About the Authors

A. V. Atrashchenko
National Research University of Information Technologies, Mechanics, and Optics (ITMO) ; Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Russian Federation

St. Petersburg 



A. A. Krasilin
National Research University of Information Technologies, Mechanics, and Optics (ITMO) ; Ioffe Physical-Technical Institute of the Russian Academy of Sciences
Russian Federation

St. Petersburg



I. S. Kuchuk
National Research University of Information Technologies, Mechanics, and Optics (ITMO) ; Saint Petersburg State Institute of Technology (Technical University)
Russian Federation

St. Petersburg



E. M. Aryslanova
National Research University of Information Technologies, Mechanics, and Optics (ITMO)
Russian Federation

St. Petersburg



S. A. Chivilikhin
National Research University of Information Technologies, Mechanics, and Optics (ITMO)
Russian Federation

St. Petersburg



P. A. Belov
National Research University of Information Technologies, Mechanics, and Optics (ITMO) ; Queen Mary University of London
Russian Federation

St. Petersburg; London, UK



References

1. Evtikhiev V. P., Tokranov V. E., Kryzhanovski A. K. et al. Growth of InAs quantum dots on vicinal relax GaAs(001) surfaces misoriented in the 010 direction // Semiconductors. — 1998. — V. 32, No. 7. — P. 765–769.

2. Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodispere CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites // American chemistry society. — 1993. — V. 115. — P. 8706–8715.

3. Murray C.B., Kagan C.R., Bawendi M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies // Annual review of materials science. — 2000. — V. 30. — P. 545–610.

4. Yu W.W., Peng X. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers // Angewandte chemie. — 2002. — V. 41. — P. 2368– 2371.

5. Walling M.A., Novak J.A., Shepard J.R.E. Quantum dots for live cell and in vivo imaging // International journal of molecular sciences. — 2009. — V. 10. — P. 441–491.

6. Raoa C.N.R., Vivekchanda S.R.C., Govindaraja A. Inorganic nanowires // Comprehensive nanoscience and technology. — 2010. — V. 1. — P. 289–314.

7. Ивановский А.Л. Неуглеродные нанотрубки: синтез и моделирование // Успехи химии. — 2002. — Т. 71, № 3. — С. 203–224.

8. Захарова Г.С. Нанотрубки и родственные наноструктуры оксидов d-металлов: синтез и моделирование // Успехи химии. — 2005. — Т. 74, № 7. — C. 651–685.

9. Раков Э.Г. Нанотрубки и фуллерены. — М.: Университетская книга, 2006.

10. Сухно И.В., Бузько В.Ю. Углеродные нанотрубки. — Красноярск, 2008.

11. Tang J., Redl F., Zhu Y. et al. An organometallic synthesis of TiO2 nanoparticles // Nano letters. — 2005. — V. 5. — P. 543–548.

12. Масалов В.М., Сухинина Н.С., Емельченко Г.А. Коллоидные частицы диоксида кремния для формирования опалоподобных структур // Физика твердого тела. — 2011. — T. 53, № 6. — C. 1072–1076.

13. Буякова С.П. Получение и структура пористой керамики из нанокристаллического диоксида циркония // Неорганические материалы. — 2004. — T. 10, № 7. — C. 869–872.

14. Sheng Q., Yuan Sh., Zhang J., Chen F. Synthesis of mesoporoustitania with highphotocatalyticactivity by nanocrystalline particle assembly // Microporous and mesoporous materials. — 2006. — V. 87(3). — P. 177–184.

15. Birner A. Application of nanoporous alumina surfaces as substrates for pore suspended lipid membranes. 2003: Berlin. p. 1-3. — Berlin, 2003.

16. Tomaru Y., Tani T., Hotta Y. et al. LPR sensor made by using ordered porous alumina // Fujifilm research & development. — 2008. — V. 53. — P. 1.

17. Петухов Д.И. Газоселективные мембраны и мембранные катализаторы на основе пленок пористого оксида алюминия // Всероссийская конференция по наноматериалам (НАНО 2009), Екатеринбург, 2009.

18. Врублевский И., Чернякова Е., Видеков В. Получение тонких мембран на основе анодного оксида алюминия для пленочных газовых сенсоров // XIХ ННТК «АДП-2010», 2010.

19. Patermarakis G., Pavlidou C. Catalysis over porous anodic alumina catalysts // Journal of catalysis. — 1994. — V. 147(1). — P. 140–155.

20. Sadykov V., Parmon V., Tikhov S. Design of some oxide/metal composite supports and catalysts // Composite interfaces. — 2009. — V. 16. — P. 457–476.

21. Guo Y., Zhou L., Kameyama H. Thermal and hydrothermal stability of a metal monolithic anodic alumina support for steam reforming of methane // Chemical engineering journal. — 2011. — V. 168. — P. 341–345.

22. Noginov M. A., Barnakov Yu. A., Li H. et al. Silver-filled alumina membrane: metamaterial with hyperbolic dispersion and near-zero singularity // Photonic metamaterials and plasmonics. — 2010.

23. Barnakov Y. A., Kiriy N., Black P. et al. Toward curvilinear metamaterials based on silver-filled alumina templates // Optical materials express. — 2011. — V. 1(6). — P. 1061–1064.

24. Веселаго В.Г. Электродинамика веществ с одновременно отрицательными значениями эпсилон и ню // Успехи физических наук. — 1967. — T. 7. — C. 517.

25. Pendry J. B. Negative refraction makes a perfect lens // Physical review letters. — 2000. — Oct. — V. 85. — P. 3966–3969.

26. Shelby R. A., Smith D. R., Schultz S. Experimental verification of a negative index of refraction // Science. — 2001. — V. 292, No. 5514. — P. 77–79.

27. Cai W., Shalaev V. Optical metamaterials: fundamentals and applications. — Springer, 2010.

28. Caloz C., Itoh T. Electromagnetic metamaterials transmission line theory and microwave applications. — Berlin : Wiley-Interscience, 2005.

29. Engheta N., Ziolkowski R. Electromagnetic metamaterials: physics and engineering explorations. — IEEE Press, Piscataway, NJ, 2006.

30. Eleftheriades G. V., Balmain K. G. Negative refraction metamaterials: fundamental principles and applicatons. — Weinheim : Wiley-VCH, 2005.

31. Capolino F. Metamaterials handbook. Vol. 1: theory and phenomena of metamaterials. — CRC Press, Boca Raton, CA, 2009.

32. Anantha Ramakrishna S., Pendry J. B. Removal of absorption and increase in resolution in a near-field lens via optical gain // Physical review B. — 2003. — V. 67. — P. 201101.

33. Belov P. A., Hao Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime // Physical review B. — 2006. — V. 73. — P. 113110.

34. Li X., He S., Jin Y. Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies // Physical review B. — 2007. — V. 75. — P. 045103.

35. Podolskiy V. A., Narimanov E. E. Strongly anisotropic waveguide as a nonmagnetic left-handed system // Physical review B. — 2005. — V. 71. — P. 201101.

36. Salandrino A., Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations // Physical review B. — 2006. — V. 74. — P. 075103.

37. Liu Z., Lee H., Xiong Y. et al. Optical hyperlens magnifying sub-diffraction-limited objects // Science. — 2007. — V. 315. — P. 1686.

38. Xiong Y., Liu Z., Zhang X. Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers // Applied physics letters. — 2008. — V. 93, No. 11. — P. 111116.

39. Kildishev A.V., Cai W., Chettiar U.K., Shalaev V.M. Transformation optics: approaching broadband electromagnetic cloaking // New journal of physics. — 2008. — V. 10. — P. 115029.

40. Zhang S., Fan W., Panoiu N. C. et al. Experimental demonstration of near-infrared negative-index metamaterials // Physical review letters. — 2005. — Sep. — V. 95. — P. 137404.

41. Dolling G., Enkrich C., Wegener M. et al. Simultaneous negative phase and group velocity of light in a metamaterial // Science. — 2006. — V. 312, No. 5775. — P. 892–894.

42. Valentine J., Zhang Sh., Zentgraf Th. et al. Three-dimensional optical metamaterial with a negative refractive index // Nature. — 2008. — V. 455, No. 7211. — P. 376–U32.

43. Xiao S., Drachev V. P., Kildishev A. V. et al. Loss-free and active optical negative-index metamaterials // Nature. — 2010. — V. 466. — P. 735–738.

44. Yao J., Liu Zh., Liu Yo. et al. Optical negative refraction in bulk metamaterials of nanowires // Science. — 2008. — V. 321. — P. 930.

45. Cullis A. G., Canham L. T., Calcott P. D. J. The structural and luminescence properties of porous silicon // Journal of applied physics. — 1997. — V. 82, No. 3. — P. 909–965.

46. Foell H., Langa S., Carstensen J. et al. Pores in III-V semiconductors // Advanced materials. — 2003. — V. 15, No. 3. — P. 183.

47. Christophersen M., Langa S., Carstensen J. et al. A comparison of pores in silicon and pores in III-V compound materials // 3rd International Conference on Porous Semiconductors: Science and Technology (PSST 2002), Tenerife, Spain, Mar 10-15, 2002. In: Physica status solidi A-applied research. — 2003. — May. — V. 197, No. 1. — P. 197–203.

48. Ulin V. P., Konnikov S. G. Electrochemical pore formation mechanism in III-V crystals - (Part I) // Semiconductors. — 2007. — V. 41, No. 7. — P. 832–844.

49. Foell H., Leisner M., Cojocaru A., Carstensen J. Macroporous semiconductors // Materials. — 2010. — V. 3, No. 5. — P. 3006–3076.

50. Atrashchenko A. V., Katz V. N., Ulin V. P. et al. Fabrication and optical properties of porous InP structures // Physica E: Low-dimensional systems and nanostructures. — 2012. — V. 44, No. 7-8. — P. 1324–1328. URL: http://dx.doi.org/10.1016/j.physe.2012.02.012

51. Adomavichius R., Adamonis J., Bichiunas A. et al. Terahertz pulse emission from nanostructured (311) surfaces of GaAs // Journal of infrared, millimetr and terahertz waves. — 2012. — V. 33, No. 6. — P. 599–604. URL: http://dx.doi.org/10.1007/s10762-012-9891-0

52. Sulka G. D. Nanostructured materials in electrochemistry // Nanostructured Materials in Electrochemistry / Ed. by Ali Eftekhari. — Wiley-VCH Verlag GmbH & Co. KGaA, 2008. — P. 1–116.

53. Jain A., Rogojevic S., Ponoth S. et al. Porous silica materials as low-k dielectrics for electronic and optical interconnects // Proceedings of the 28th International Conference on Metallurgic Coatings and Thin Films. In: Thin solid films. — 2001. — V. 398-399 — P. 513–522.

54. Moon J.-M., Wei A. Uniform gold nanorod arrays from polyethylenimine-coated alumina templates // Journal of physical chemistry B. — 2005. — V. 109, No. 49. — P. 23336–23341.

55. Dou R., Derby B. The strength of gold nanowire forests // Scripta materialia. — 2008. — V. 59, No. 2. — P. 151 – 154.

56. Li F., Wiley J. B. Preparation of free-standing metal wire arrays by in situ assembly // Journal of magnetism and magnetic materials. — 2008. — V. 18. — P. 3977–3980.

57. Keller F., Hunter M. S., Robinson D. L. Structural features of oxide coatings on aluminium // Journal of the electrochemical society. — 1953. — V. 100. — P. 411–419.

58. Masuda H., Abe A., Nakao M. et al. Ordered mosaic nanocomposites in anodic porous alumina // Advanced materials. — 2003. — V. 15, No. 2. — P. 161–164.

59. Asoh H., Nishio K., Nakao M. et al. Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al // Journal of the electrochemical society. — 2001. — V. 148, No. 4. — P. B152–B156.

60. Alam K.M., Singh A.P., Bodepudi S.C., Pramanik S. Fabrication of hexagonally ordered nanopores in anodic alumina: An alternative pretreatment // Surface science. — 2011. — V. 605, No. 3-4. — P. 441 – 449.

61. Ng C. K. Y., Ngan A. H. W. Precise control of nanohoneycomb ordering over anodic aluminum oxide of square centimeter areas // Chemistry of materials. — 2011. — V. 23, No. 23. — P. 5264–5268.

62. Hudson L. K., Misra C., Perrotta A. J. et al. Aluminum oxide. — Wiley-VCH Verlag GmbH & Co. KGaA, 2000.

63. Evans P., Hendren W. R., Atkinson R. et al. Growth and properties of gold and nickel nanorods in thin film alumina // Nanotechnology. — 2006. — V. 17, No. 23. — P. 5746.

64. Zaraska L., Sulka G. D., Jaskula M. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays // Surface and coatings technology. — 2010. — V. 205, No. 7. — P. 2432 – 2437.

65. Riveros G., Green S., Cortes A. et al. Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates // Nanotechnology. — 2006. — V. 17, No. 2. — P. 561.

66. Yao J., Wang Y., Tsai K.-T. et al. Design, fabrication and characterization of indefinite metamaterials of nanowires // Philosophical transactions of the royal society A: mathematical, physical and engineering sciences. — 2011. — V. 369, No. 1950. — P. 3434–3446.

67. Akapiev G.N., Dmitriev S.N., Erler B. et al. Ion track membranes providing heat pipe surfaces with capillary structures // Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. — 2003. — V. 208. — P. 133–136.

68. Darques M., De la Torre Medina J., Piraux L. et al. Microwave circulator based on ferromagnetic nanowires in an alumina template // Nanotechnology. — 2010. — V. 21, No. 14. — P. 145208.

69. Prida V.M., Pirota K.R., Navas D. et al. Self-organized magnetic nanowire arrays based on alumina and titania templates // Journal of nanoscience and nanotechnology. — 2007. — V. 7, No. 1. — P. 272–285.

70. Carignan L.-P., Yelon A., Menard D., Caloz C. Ferromagnetic nanowire metamaterials: theory and applications // IEEE Transactions on microwave theory and techniques. — 2011. — V. 59, No. 10. — P. 2568– 2586.

71. Granitzer P., Rumpf K. Porous silicon-a versatile host material // Materials. — 2010. — V. 3, No. 2. — P. 943– 998.

72. Rusetskii M. S., Kazyuchits N. M., Baev V. G. et al. Magnetic anisotropy of nickel nanowire array in porous silicon // Technical physics letters. — 2011. — May. — V. 37, No. 5. — P. 391–393.

73. Fabrication // URL: http://www.avcorp.com/section.asp?catid=152&subid=165&pageid=185

74. Kartopu G., Yalchin O. Electrodeposited nanowires and their applications // Electrodeposited Nanowires and Their Applications / Ed. by N. Lupu. — Intech, Olajnica 19/2, 32000 Vukovar, Croatia, 2010. — P. 113–140.

75. Яковлева Н.М. Особенности строения и механизм формирования анодных оксидов алюминия. — Карельский государственный педагогический университет, Петрозаводский государственный университет: Петрозводск, 2003.

76. Вихарев А.В., Вихарев А.А. Особенности строения и механизм формирования анодных оксидов алюминия // Ползуновский вестник. — 2010. — V. 3. — P. 204–208.

77. Грилихес С.Я. Оксидные и фосфатные покрытия металлов. — Машиностроение, 1978.

78. Напольский К.С. Электрохимическое формирование пространственно-упорядоченных металлических наноструктур в пористых матрицах. — МГК им. М.В. Ломоносова: Москва, 2009.

79. Практикум по прикладной электрохимии / В.Н.Варыпаев, В.Н. Кудрявцев (ред.). — Л.: Химия, 1990.

80. Mombello D., Pira N.L., Belforte L. et al. Porous anodic alumina for the adsorption of volatile organic compounds // Sensors and actuators B: chemical. — 2009. — V. 137(1). — P. 76–82.

81. Wang H., Hongzhan Y., Wang H. Analysis and self-lubricating treatment of porous anodic аlumina film formed in a compound solution // Applied surface science. — 2005. — V. 252(5). — P. 1662–1667.

82. Coz F.L., Arurault L., Datas L. Chemical analysis of a single basic cell of porous anodic aluminium oxide templates // Materials characterization. — 2010. — V. 61. — P. 283–288.

83. Yang Y., Gao Q. Influence of sulfosalicylic acid in the electrolyte on the optical properties of porous anodic alumina membranes // Physics letters A. — 2004. — V. 333. — P. 328–333.

84. Напольский К.С., Елисеев А.А., Лукашин A.B. Двумерные пространственно-упорядоченные системы Аl2О3: Исследование методом малоуглового рассеяния нейтронов // Письма в ЖЭТФ. — 2007. — T. 85(9). — C. 549–554.

85. Jaafar M., Navas D., Hernandez-Velez M. et al. Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation // Surface science. — 2009. — V. 603. — P. 3155–3159.

86. Напольский К. С. In-situ изучение процесса самоорганизации пористой структуры анодного оксида алюминия. — МГУ им. М.В. Ломоносова кафедра неорганической химии, Петербургский институт ядерной физики им. Б.П. Константинова РАН, г. Гатчина, Debye Institute for Nanomaterials, University of Utrecht, The Netherland, 2009.

87. Wernick S., Pinner R. The surface treatment and finishing of aluminum and its alloys / Ed. by P.G. Sheasby. — Finishing Publication Ltd, 1987.

88. Patermarakis G., Moussoutzanis K., Nikolopoulos N. Investigation of the incorporation of electrolyte anions in porous anodic Al2O3 films by employing a suitable probe catalytic reaction // Journal of solid state electrochemistry. — 1999. — V. 3. — P. 193–204.

89. Мошников В.А., Соколова Е.Н., Спивак Ю.М. Формирование и анализ структур на основе пористого оксида алюминия // Известия СПбГЭТУ «ЛЭТИ». — 2011. — T. 2. — C. 13–19.

90. O’Sullivan J.P., Wood G.C. The morphology and mechanism of formation of porous anodic films on aluminum // Proceedings of the royal society A: mathematical, physical and engineering sciences. — 1970. — V. 317. — P. 511–543.

91. Parkhutik V.P., Shershulsky V.I. Theoretical modelling of porous oxide growth on aluminum // Journal of physics D: Applied physics. — 1992. — V. 25. — P. 1258–1263.

92. Ebihara K., Takahashi H., Nagayama M. Structure and density of anodic oxide films formed on aluminum in oxalic acid solutions // Journal of the metal finishing society of Japan. — 1983. — V. 34. — P. 548–553.

93. Гаврилов С.А. Электрохимические процессы в технологии микро- и нано- электроники / Ed. by С.А. Гаврилов, А.Н. Белов. — Высшее образование, Москва, 2009. — C. 257.

94. Афанасьев А. В., Ильин В. А., Мошников В. А. et al. Синтез нано- и микропористых структур электрохимическими методами // Биотехносфера. — 2011. — T. 1-2. — C. 39–45.

95. Sulka G.D., Parkola K.G. Anodising potential influence on well-ordered nanostructures formed by anodisation of aluminium in sulphuric acid // Electrochimica acta. — 2007. — V. 52. — P. 1880–1888.

96. Hwang S.-K., Jeong S.-H., Hwang H.-Y. et al. Fabrication of highly ordered pore array in anodic aluminum oxide // Korean journal of chemical engineering. — 2002. — V. 19. — P. 467–473.

97. Головань А.Л., Тимошенко В.Ю., Кашкаров П.К. Оптические свойства нанокомпозитов на основе пористых систем // Успехи физических наук. — 2007. — T. 177. — C. 619–638.

98. Garcia-Vergara S.J., Thompson G.E., Habazaki H. A flow model of porous anodic film growth on aluminium // Electrochimica acta. — 2006. — V. 52. — P. 681–687.

99. Peng C. Y., Liu C. Y., Liu N. W. et al. Ideally ordered 10 nm channel arrays grown by anodization of focusedion-beam patterned aluminum // Journal of vacuum science & technology B: microelectronics and nanometer structures. — 2005. — V. 23, No. 2. — P. 559–562.

100. Robinson A. P., Burnell G., Hu M., MacManus-Driscoll J. L. Controlled, perfect ordering in ultrathin anodic aluminum oxide templates on silicon // Applied physics letters. — 2007. — V. 91, No. 14. — P. 143123.

101. Liu N. W., Datta A., Liu C. Y., Wang Y. L. High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays // Applied physics letters. — 2003. — V. 82, No. 8. — P. 1281–1283.

102. Zhijun S., Hong Koo K. Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films // Applied physics letters. — 2002. — V. 81, No. 18. — P. 3458–3460.

103. Krishnan R., Thompson C. V. Monodomain high-aspect-ratio 2D and 3D ordered porous alumina structures with independently controlled pore spacing and diameter // Advanced materials. — 2007. — V. 19, No. 7. — P. 988–992.

104. Kim B., Park S., McCarthy T. J., Russell T. P. Fabrication of ordered anodic aluminum oxide using a solventinduced array of block-copolymer micelles // Small. — 2007. — V. 3, No. 11. — P. 1869–1872.

105. Fournier-Bidoz S., Kitaev V., Routkevitch D. et al. Highly ordered nanosphere imprinted nanochannel alumina (NINA) // Advanced materials. — 2004. — V. 16, No. 23-24. — P. 2193–2196.

106. Masuda H., Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina // Science. — 1995. — V. 268, No. 5216. — P. 1466–1468.

107. Wurtz G. A., Dickson W., O’Connor D. et al. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime // Optics express. — 2008. — V. 16. — P. 7460–7465.

108. Wurtz G. A., Pollard R., Hendren W. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality // Nature nanotechnology. — 2011. — V. 6. — P. 107–111.

109. Zahariev A., Kanazirski A., Girginov A. Anodic alumina films formed in sulfamic acid solution // Inorganica chimica acta. — 2008. — V. 361. — P. 1789–1792.

110. Паркун В.М., Врублевский И.А., Игнашев Е.П. Исследование объемного роста пленок пористого оксида алюминия // Доклады БГУИР. — 2003. — C. 66–72.

111. Lee W., Scholz R., Nielsch K., Gesele U. A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes // Angewandte chemie. — 2005. — V. 117(37). — P. 6204–6208.

112. Losic D., Losic D. Jr. Preparation of porous anodic alumina with periodically perforated pores // Langmuir. — 2009. — V. 25(10). — P. 5426–5431.

113. Lee J., Nigo S., Nakano Y. et al. Structural analysis of anodic porous alumina used for resistive random access memory // Science and technology of advanced materials. — 2010. — V. 11. — P. 1–4.

114. Williams P.F. Electrochemical self-assembly of porous alumina templates // AIChE Journal. — 2005. — V. 51. — P. 649–655.

115. Choi J., Sauer G., Nielsch K. et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio // Chemistry of materials. — 2003. — V. 15. — P. 776–779.

116. Сенатская И. Магнитная жидкость // Наука и жизнь. — 2002. — T. 11. — C. 36–41.

117. Schenenberger C., van der Zande B. M. I., Fokkink L. G. J. et al. Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology // Journal of physical chemistry B. — 1997. — Jul 10. — V. 101, No. 28. — P. 5497–5505.

118. Yin A. J., Li J., Jian W. et al. Fabrication of highly ordered metallic nanowire arrays by electrodeposition // Applied physics letters. — 2001. — V. 79, No. 7. — P. 1039–1041.

119. Metzger R. M., Konovalov V. V., Sun M. et al. Magnetic nanowires in hexagonally ordered pores of alumina // 10th Annual Magnetic Recording Conference on Magnetic Recording Media (TMRC099), University of California, San Diego, California, Aug 09-11, 1999. In: IEEE Transactions on magnetics. — 2000. — V. 36, No. 1, Part 1. — P. 30–35.

120. Wang Z., Brust M. Fabrication of nanostructure via self-assembly of nanowires within the AAO template // Nanoscale research letters. — 2007. — V. 2. — P. 34–39.

121. Sharma G., Pishko M.V., Grimes C.A. Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer // Journal of materials science. — 2007. — V. 42. — P. 4738–4744.

122. Belov A., Gavrilov S., Shevyakov V., Redichev E. Pulsed electrodeposition of metals into porous anodic alumina // Applied physics A: materials science & processing. — 2011. — V. 102. — P. 219–223.

123. Nielsch K., Muller F., Li A.-P., Gosele U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition // Advanced materials. — 2000. — V. 12, No. 8. — P. 582–586.

124. Crouse M. M., Miller A. E., Crouse D. T., Ikram A. A. Nanoporous alumina template with in-situ barrier oxide removal, synthesized from a multilayer thin film precursor // Jourmal of the electrochemical society. — 2005. — V. 152, No. 10. — P. D167–D172.

125. Foong T. R. B., Sellinger A., Hu X. Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates on ITO glass // ACS Nano. — 2008. — V. 2. — P. 2250–2256.

126. Mallet J., Yu-Zhang K., Matefi-Tempfli S. et al. Electrodeposited L10 CoxPt1-x nanowires // Journal of physics D: applied physics. — 2005. — V. 38, No. 6. — P. 909.

127. Matefi-Tempfli S., Matefi-Tempfli M., Piraux L. Fabrication of nanowires and nanostructures: combining template synthesis with patterning methods // Applied physics A: materials science & processing. — 2009. — V. 96, No. 3. — P. 603–608.

128. Li X., Wang Y., Song G. et al. Synthesis and growth mechanism of Ni nanotubes and nanowires // Nanoscale research letters. — 2009. — V. 4. — P. 1015–1020.

129. Liu L., Lee W., Huang Z. et al. Fabrication and characterization of flow-through nanoporous gold nanowires/AAO composite membranes // Nanotechnology. — 2008. — V. 19(33). — P. 335604.

130. Huang X., Li L., Luo X. Zhu X., Li G. Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays // Journal of physical chemistry C. — 2008. — V. 112. — P. 1468–1472.

131. Pang Y.T., Meng G.W., Zhang Y. et al. Copper nanowire arrays for infrared polarizer // Applied physics A: materials science & processing. — 2003. — V. 76. — P. 533–536.

132. Kartopu G., Habouti S., Es-Souni M. Synthesis of palladium nanowire arrays with controlled diameter and length // Materials chemistry and physics. — 2008. — V. 107. — P. 226–230.


Review

For citations:


Atrashchenko A.V., Krasilin A.A., Kuchuk I.S., Aryslanova E.M., Chivilikhin S.A., Belov P.A. Electrochemical methods of synthesis of hyperbolic metamaterials. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(3):31-51. (In Russ.)

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)