Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis and the study of magnetic characteristics of nano La1-xSrxFeO3 by co-precipitation method

Abstract

The goal of this study was the sol-gel synthesis of nanocrystals La1-xSrxFeO3 (x=0.0, 0.1, 0.2, 0.3) and an examination of their magnetic properties. An aqueous solution of ammonia and 5% ammonium carbonate solution were used as precipitating agents. It was established that the crystallization of LaFeO3 is completed at 750◦C (annealing for 1 h). The average diameter of the synthesized particles was 80–100 nm. Investigation of the magnetic properties showed non-monotonic changes of saturation magnetic moment and increase of coercive force with increased Sr content in the sample.

About the Authors

A. T. Nguyen
Ho Chi Minh City Pedagogical University
Viet Nam

Ho Chi Minh City



M. V. Knurova
Voronezh State University
Russian Federation

Voronezh



T. M. Nguyen
Ha Noi National University of Education
Viet Nam

Ha Noi



V. O. Mittova
Voronezh State Medical Academy
Russian Federation

Voronezh



I. Ya. Mittova
Voronezh State University
Russian Federation

Voronezh



References

1. Rusanov A.I. Striking world of nanostructures. Russian Journal of General Chemistry, 72(4), P. 495–511 (2002).

2. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions. Russian Journal of Applied Chemistry, 87(2), P. 167–171 (2014).

3. Khetre S.M., Jadhav H.V., Jagadale P.N., Kulal S.R., Bamane S.R. Studies on electrical and dielectric properties of LaFeO3. Journal of Applied Sciences Research, 2(4), P. 503–511 (2011).

4. Wang J., Dong X., Qu Z., Liu G., Yu W. Electrospinning preparation of LaFeO3 nanofibers. Modern Applied Science, 3(9), P. 65–71 (2009).

5. Cao X., Kim Ch.-S., Yoo H.-I. Effect of substitution of manganese for iron on the structure and electrical properties of yttrium ferrite. Journal of the American Ceramic Society, 84(6), P. 1265–1272 (2001).

6. Nguyen A.T., Almjasheva O.V., Mittova I.Ya., Stognei O.V., Soldatenko S.A. Synthesis and magnetic properties of YFeO3 nanocrystals. Russian Journal of Inorganic Materials, 45(11), P. 1304–1308 (2009).

7. Nguyen A.T., Mittova I.Ya., Al’myasheva O.V. Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions. Russian Journal of Applied Chemistry, 82(11), P. 1915–1918 (2009).

8. Morozov M.I., Lomanova N.A., Gusarov V.V. Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russian Journal of General Chemistry, 73(11), P. 1772–1776 (2003).

9. Lomanova N.A., Gusarov V.V. Effect of surface melting on the formation and growth of nanocrystals in the Bi2O3-Fe2O3 system. Russian Journal of General Chemistry, 83(12), P. 2251–2253 (2013).

10. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosystems: Physics, Chemistry, Mathematics, 4(5), P. 696–705 (2013).

11. Nguyen A.T., Mittova I.Ya., Almjasheva O.V., Kirillova S.A., Gusarov V.V. Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite. Glass Physics and Chemistry. 34(6), P. 756–761 (2008).

12. Peter S.D., Garbowski E., Perrichon V., Primet M. NO reduction by CO over aluminate-supported perovskites. Catalysis Letters, 70(1-2), P. 27–33 (2000).

13. Stathopoulos V.N., Belessi V.C., Ladavos A.K. Samarium based high surface area perovskite type oxides SmFe1−xAlxO3 (x= 0.00, 0.50, 0.95). Part II, catalytic combustion of CH4. Reaction Kinetics and Catalysis Letters, 72(1), P. 49–55 (2001).

14. Dinh V.T., Mittova V.O., Almjasheva O.V., Mittova I.Ya. Synthesis and magnetic properties of nanocrystalline Y1−xCdxFeO3−δ (0 6 x 6 0.2). Russian Journal of Inorganic Materials, 47(10), P. 1141–1146 (2011).

15. Nguyen A.T., Mittova I.Ya., Solodukhin D.O., Al’myasheva O.V., Mittova V.O., Demidova S.Yu. Sol-Gel Formation and Properties of Nanocrystals of Solid Solutions Y1−xCaxFeO3. Russian Journal of Inorganic Chemistry, 59(2), P. 40–45 (2014).

16. Golubeva O.Yu., Gusarov V.V., Semenov V.G., Volodin V.S. Structural stabilization of Fe4+ ions in perovskite-like phases based on the BiFeO3-SrFeOy system. Glass Physics and Chemistry, 35(3), P. 313–319 (2009).

17. Oanh P.T.H., Ngoc T.M., Tuyen T.N. Synthesis and electrical properties of materials La1−xMnxxSrO3 by the precipitation method. Vietnam Journal of Chemistry, 49(3A), P. 240–245 (2011).

18. Abdulaziz A.F., Khaleel K.I., Bakr N.A.. Magnetic and magnetostrictive properties of Co1−xZnxFe2O4 nanoparticles produced by co-precipitation method. Tikrit Journal of Pure Science, 16(4), P. 216–222 (2011).

19. Schweitzer G.K., Pesterfield L.L. The Aqueous Chemistry of the Elements. Oxford: OUP, 448 p. (2010).

20. Richens D.T. The Chemistry of Aqua Ions. Wiley, 604 p. (1997).

21. Sharikov F.Yu., Almjasheva O.V., Gusarov V.V. Thermal analysis of formation of ZrO2 nanoparticles under hydrothermal. Russian Journal of Inorganic Chemistry, 51(10), P. 1538–1542 (2006).

22. Lide R.D. Handbook of Chemistry and Physics, 84-th Edition. Copyright CRC Press LLC, 2475 p. (2004).

23. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, 32(5), P. 751–767 (1976).


Review

For citations:


Nguyen A.T., Knurova M.V., Nguyen T.M., Mittova V.O., Mittova I.Ya. Synthesis and the study of magnetic characteristics of nano La1-xSrxFeO3 by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5):692-702.

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)