Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The computation of the nanoparticles volume distribution function and the specific surface area based on the small-angle x-ray scattering indicatrix by the method of the statistical regularization

Abstract

A modification of the method of statistical regularization to restore the volume distribution function of the particle radius of gyration given by small-angle X-ray scattering indicatrix is developed. The criteria to select grid nodes along the radius of gyration together with the choice of the optimal value of the regularization parameter is described.

The effectiveness of the method is confirmed in tests of the particle distribution of the three shapes with symmetrical cross-section (ellipsoid, rectangular parallelepiped, right cylinder) and anisometry in the range 0,5…2. Integral ambiguity of reconstruction of the distribution function does not exceeds 4%.

The method of calculating the specific surface area on the basis of the reconstructed distribution function is represented. The obtained specific surface depends weakly on the assumed anisometry and is depends strongly on different proposed forms of the particles.

About the Authors

A. V. Kuchko
National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Kuchko Artiem Vledimirovich postgraduate



A. V. Smirnov
National Research University of Information Technologies, Mechanics and Optics
Russian Federation

Smirnov Alexander Vitalijevich Associate Professor, Ph.D.



References

1. Guinier A., Fournet G. Small-angle Scattering of X-rays. — New-York: Wiley, 1955.— 268 р.

2. Glatter O., Kratky O. Small Angle X-ray Scattering. — London: Academic Press, 1982. — 515 p.

3. Свергун Д. И. Фейгин Л. А. Рентгеновское и малоугловое рассеяние. — М: Наука,1986. — 280с.

4. Mittelbach P., Porod G. Zur Rontgenkleinwinkelstreuung verd ¨ unnter kolloider Systeme// Kolloid Z. Z. ¨ Polym. — 1965. — 202. — 40-49.

5. Letcher, J. H.; Schmidt, P. W. Small Angle X Ray Scattering Determination of Particle Diameter Distributions in Polydisperse Suspensions of Spherical Particles// J. Appl. Cryst. — 1966. — 37. — P.649-655.

6. Sjuberg B. Small-angle X-ray investigation of the equilibria between copper(II) and glycyl-L-histidylglycine in water solution. A method for analysing polydispersed systems // J. Appl. Cryst. — 1974. — 7. — P.192-199.

7. Yan Y.D., Clarke J. H. R. In-situ determination of particle size distributions in colloids // Advances in Colloid and Interface Science. — 1989.— 29. — P.277-318.

8. Уханова Е.А., Смирнов А.В., Фёдоров Б.А. Расчет Функции распределения сферических частиц по размерам по данным малоуглового рассеяния // Научно-технический вестник СПбГУ ИТМО. — 2009. — T.2,№60. — С.66-75.

9. Glatter O. A new method for the evaluation of small-angle scattering data // J. Appl. Cryst. — 1977. — 10. — P.415-421.

10. Krauthauser H. G., Heitmann W., Kops A., Nimtz G. Small-Angle X-ray Scattering Analysis of ParticleSize Distributions of Mesoscopic Metallic Systems with Consideration of the Particle Form Factor// J. Appl. Cryst. — 1994. — 27. — P.558-562

11. Плавник Г.М., Кожевников А.И., Шишкин А.В. Применение метода статистической регуляризации для обработки данных малоуглового рассеяния рентгеновских лучей. Нахождение распределения неоднородностей по размерам// ДАН СССР. — 1976. — Т.226,№3. — C.630-633.

12. Плавник Г.М Нахождение распределения по размерам малоанизометрических частиц неодинаковой формы методом малоугловой рентгенографии// Кристаллография. — 1984. — 29,Вып. 2. — C.210-214.

13. Bente Vestergaard B. ,Steen Hansen S. Application of Bayesian analysis to indirect Fourier transformation in small-angle scattering //Journal of Applied Crystallography. — 2006. — 39. — P.797-804.

14. Hansen S. Estimation of chord length distributions from small-angle scattering using indirect Fourier transformation //Journal of Applied Crystallography.– 2003.-№36. — P.1190-1196

15. Guinier A. La diffraction des rayons X aux tres petits angles: application а l’etude de phenomenes ultramicroscopiqus// Ann. Phys. — 1939. — 12. — P.161-237.

16. Porod G. Abhangigkeit der R ¨ ontgen—Kleinwinkelstreuung von Form und Gr ¨ o¨fle der kolloiden Teilchen in verdunnten Systemen. IV. // Acta Phys. Austr. — 1948. — 2. — P.255-292. ¨

17. Mittelbach P.& Porod G. Zur Rantgenkleinwinkelstreuung verd ¨ unnter kolloider Systeme. VII. Die Berechnung ¨ der Streukurven von dreiachsigen Ellipsoiden// Acta Phys. Austr. — 1962. — 15. — P.122-147.

18. Тихонов А. Н., Арсенин В.Я. Методы решения некорректных задач. — М.: Наука, 1979. — 284 с.

19. Корн Г., Корн Т. Справочник по математике. — М.: Наука, 1974. — 832с.

20. Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria // J. Appl. Cryst. — 1992. — 25. — P.495-503.

21. Альмяшева О.В., Федоров Б.А., Смирнов А.В., Гусаров В.В. Размер, морфология и структура частиц нанопорошка диоксида циркония, полученного в гидротермальных условиях // НАНОСИСТЕМЫ: физика, химия, математика. — 2010. — T.1,№ 1. — C.26-36.

22. Tyrsted С., Becker J., Hald P., Bremholm M., Pedersen J.S., Chevallier J., Cerenius Y., Iversen S.B. Iversen B.B. In-Situ Synchrotron Radiation Study of Formation and Growth of Crystalline CexZr1¡xO2 Nanoparticles Synthesized in Supercritical Water// Chem. Mater. — 2010. — V.22,№5. — P.1814-1820.

23. Shull C.G., Roess L. C. X-Ray Scattering at Small Angles by Finely-Divided Solids.1.General Approximate Theory and Applications.// Journal of Applied Physics. — 1947. — V.18,№3. — P.295-307.


Review

For citations:


Kuchko A.V., Smirnov A.V. The computation of the nanoparticles volume distribution function and the specific surface area based on the small-angle x-ray scattering indicatrix by the method of the statistical regularization. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(3):76-91. (In Russ.)

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)