Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Formation mechanism of YFeO3 nanoparticles under the hydrothermal conditions

Abstract

Yttrium orthoferrite nanocrystals with an average crystallite size of 55 – 60 nm have been obtained under hydrothermal conditions. The influence of the hydrothermal synthesis temperature on the structure and crystallite size has been investigated. Mechanism of the YFeO3 formation under the hydrothermal conditions has been proposed.

About the Authors

V. I. Popkov
Saint Petersburg State Technological Institute (Technical University); Ioffe Physical Technical Institute
Russian Federation

St. Petersburg



O. V. Almjasheva
Saint Petersburg Electrotechnical University ‘LETI’, Ioffe Physical Technical Institute
Russian Federation

St. Petersburg



References

1. Livage J. Vanadium pentoxide gels. Chemistry of Materials, 3 (4), P. 578 (1991).

2. Sanchez C., Rozes L., et al. ”Chimie douce“: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials. Comptes Rendus Chimie, 13 3 (2010).

3. Brec R., Rouxel J., Tournoux M. Soft chemistry routes to new materials: chimie douce. Proceedings of the international symposium held in Nantes, France, September 6–10, 1993, Aedermannsdorf, Switzerland: Trans Tech Pubs, (1994).

4. Gopalakrishnan J. Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. Chemistry of Materials, 7 (7), P. 1265 (1995).

5. Gusarov V.V. Fast solid phase chemical reactions. Zhurnal Obshchei Khimii, 67 (12), P. 1959–1964 (1997).

6. Pozhidaeva O.V., Korytkova E.N., Drozdova I.A., Gusarov V.V. Phase state and particle size of ultradispersed zirconium dioxide as influenced by conditions of hydrothermal synthesis. Russ. J. Gen. Chem., 69 (8), P. 1265–1269 (1999).

7. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal Media of various chemical compositions. Russ. J. Gen. Chem., 72 (6), P. 910–914 (2002).

8. Al’myasheva O.V., Korytkova E.N., Maslov A.V., Gusarov V.V. Preparation of nanocrystalline alumina under hydrothermal conditions. Inorg. Mater., 41 (5), P. 460–467 (2005).

9. Komlev A.A., Gusarov V.V. Mechanism of the nanocrystals formation of the spinel structure in the MgO– Al2O3–H2O system under the hydrothermal conditions. Russ. J. Gen. Chem., 81 (11), P. 2222–2230 (2011).

10. Vasilevskaya A.K., Almjasheva O.V. Features of phase formation in the ZrO2–TiO2 system under hydrothermal conditions. Nanosystems: physics, chemistry, mathematics, 3 (4), P. 75–81 (2012).

11. Tugova E.A., Zvereva I.A. Formation mechanism of GdFeO3 nanoparticles under the hydrothermal conditions. Nanosystems: physics, chemistry, mathematics, 4 (6), P. 851–856 (2013).

12. Nakayama S. LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods. J. Mater. Sci., 6, P. 5643–5648 (2001).

13. Tac D.V., Mittova V.O., Almjasheva O.V., Mittova I.Ya. Synthesis, structure, and magnetic properties of nanocrystalline Y3−xLaxFe5O12 (0 ≤ x ≤ 0.6). Inorg. Mater., 48 (1), P. 74–78 (2011).

14. Tac D.V., Mittova V.O., Almjasheva O.V., Mittova I.Ya. Synthesis and magnetic properties of nanocrystalline Y1−xCdxFeO3−δ (0 ≤ x ≤ 0.2). Inorg. Mater., 47 (10), P. 1141–1146 (2011).

15. Tang P., Chen H., Cao F., Pan G. Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts. Catal. Sci. Technol., 1 (7), P. 1145–1148 (2011).

16. Tien N.A., Mittova I.Ya., et al. lanthanum orthoferrite. Glas. Phys. Chem., 34 (6), P. 756–761 (2008).

17. Tien N.A., Mittova I.Ya., Al’myasheva O.V. Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions. Russ. J. Appl. Chem., 82 (11), P. 1915– 1918 (2009).

18. Shang M., Zhang C., et al. The multiferroic perovskite YFeO3. Appl. Phys. Lett., 102 (6), P. 062903(3 p.) (2013).

19. Zhou Z., Guo L., et al. Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. Elsevier B, 583, P. 21–31 (2014).

20. Tang P., Sun H., Chen H., Cao F. Hydrothermal processing-assisted synthesis of nanocrystalline YFeO3 and its visible-light photocatalytic activity. Curr. Nanosci., 8, P. 64–67 (2012).

21. Tien N.A., Almjasheva O.V., et al. Synthesis and magnetic properties of YFeO3 nanocrystals. Inorg. Mater., 45 (11), P. 1304–1308 (2009).

22. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2 (2), P. 65–71 (1969).

23. Patterson A. The Scherrer formula for X-ray particle size determination. Phys. Rev., 56, P. 978–982 (1939).

24. Christensen A.N., Hazell R.G. Hydrothermal investigation of the systems Y2O3–H2O–Na2O, Y2O3–D2O– Na2O, Y2O3–H2O, and Y2O3–H2O–NH3. The crystal structure of Y(OH)3. Acta Chem. Scand., 21, P. 481–492 (1967).

25. Christensen A.N., Hazell R.G. The crystal structure of Ho2(OH)4CO3. Acta Chem. Scand., 38 (A), P. 157–161 (1984).


Review

For citations:


Popkov V.I., Almjasheva O.V. Formation mechanism of YFeO3 nanoparticles under the hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics. 2014;5(5):703-708.

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)