Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Mathematical description of polarization distortion of signal in quantum cryptography systems

Abstract

We discuss an analytical model that describes polarization distortion of an optical signal that appears during its propagation in a fiber optics line. The model is applied for illustrating the principles of weak signal distortion compensation in different types of quantum cryptography systems.

About the Authors

S. M. Kynev
National Research University of Information Technologies, Mechanics, and Optics
Russian Federation

Sergey KynevRussia, student

St. Petersburg



A. E. Ivanova
National Research University of Information Technologies, Mechanics, and Optics
Russian Federation

Aliona Ivanovastudent

St. Petersburg



V. I. Egorov
National Research University of Information Technologies, Mechanics, and Optics
Russian Federation

Vladimir Egorovengineer

St. Petersburg



A. V. Gleim
National Research University of Information Technologies, Mechanics, and Optics
Russian Federation

Artur Gleimengineer

St. Petersburg



A. V. Rupasov
National Research University of Information Technologies, Mechanics, and Optics ; Concern “CSRI “Elektropribor” JSC
Russian Federation

Andrey Rupasov  engineer

St. Petersburg



S. A. Chivilikhin
National Research University of Information Technologies, Mechanics, and Optics
Russian Federation

Sergey Chivilikhin associate professor, PhD, senior staff scientist

St. Petersburg



References

1. Bennett C., Brassard G. Quantum cryptography: Public key distribution and coin tossing // Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. — 1984. — P. 175-179.

2. Bennett C.H. Quantum cryptography using any two nonorthogonal states // Phys. Rev. Lett. — 1992. — V. 68. — P. 3121-3124.

3. Muller A., Herzog T., Huttner B., Tittel W., Zbinden H., Gisin N. «Plug and play» systems for quantum cryptography // Appl. Phys. Lett. — 1997. — V. 70. — P. 793-795.

4. Мазуренко Ю.Т., Меролла Ж.-М., Годжебюр Ж.-П. Квантовая передача информации с помощью поднесущей частоты. Применение к квантовой криптографии // Оптика и спектроскопия. — 1999. — Т. 86. — № 2. — C. 181-183.

5. Agrawal G.P. Fiber-optic communication systems. — John Wiley & Sons Publications, NY. — 2002. — 548 p.

6. Suetsugu Y., Kato T., Kakui M., Nishimura M. Effects of random mode coupling on polarization mode dispersion and power penalty in single-mode fiber systems // Optical Fiber Technology. — 1994. — V. 1. — P. 81-86.

7. Геликонов В.М., Геликонов Г.В., Иванов В.В., Новиков М.А. Фарадеевский компенсатор взаимной оптической анизотропии на основе поляризационного кольцевого интерферометра // Письма в ЖТФ. — 1999. — Т. 25. — № 10. — С. 57-63.


Review

For citations:


Kynev S.M., Ivanova A.E., Egorov V.I., Gleim A.V., Rupasov A.V., Chivilikhin S.A. Mathematical description of polarization distortion of signal in quantum cryptography systems. Nanosystems: Physics, Chemistry, Mathematics. 2012;3(3):92-98. (In Russ.)

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)