Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of aqueous sols of nanocrystalline ceria doped with gadolinia

Abstract

Novel method of synthesis of Ce1‑xGdxO2‑d (x = 0–0.2) aqueous sols for magnetic resonance tomography applications was proposed. Detailed physico-chemical study of sols was performed using electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, UV-Vis spectroscopy and dynamic light scattering. It was shown that the lattice constant of as-prepared solid solutions obeys Vegard’s law. The particle size in sols prepared by combination of anionite and hydrothermal-microwave treatments is substantially smaller than the size of the particles prepared by conventional hydrothermal treatment.

About the Authors

G. A. Gasymova
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

PhD student



O. S. Ivanova
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

Researcher, PhD



A. Ye. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

 Senior Researcher, PhD



A. B. Shcherbakov
Institute of Microbiology and Virology of Ukrainian National Academy of Sciences
Ukraine

Key Engineer, PhD



V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Russian Federation

Key Researcher, PhD



Yu. D. Tretyakov
Lomonosov Moscow State University
Russian Federation

Dean of Department of Materials Sciences, Academician of RAS, D.Sc.



References

1. Елисеев А.А., Лукашин А.В. Функциональные наноматериалы / Под ред. Ю.Д. Третьякова. — М.: Физматлит, 2010. — 456 с.

2. Tsunekawa S., Ishikawa K., Li Z.Q., Kawazoe Y., Kasuya A. Origin of anomalous lattice expansion in oxide nanoparticles // Phys. Rev. Lett. — 2000. — V. 85. — P. 3440–3443.

3. Zhang F., Jin Q., Chan S.W. Ceria nanoparticles: size, size distribution, and shape // J. Appl. Phys. — 2004. — V. 95. — P. 4319–4326.

4. Wu L.J., Wiesmann H.J., Moodenbaugh A.R., Klie R.F., Zhu Y.M., Welch D.O., Suenaga M. Oxidation state and lattice expansion of CeO2−𝑥 nanoparticles as a function of particle size // Phys. Rev. B. — 2004. — V. 69. — 125415.

5. Deshpande S., Patil S., Kuchibhatla S.V.N.T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide // Appl. Phys. — 2005. — V. 87. — 133113.

6. Baranchikov A.E., Polezhaeva O.S., Ivanov V.K., Tretyakov Yu.D. Lattice expansion and oxygen nonstoichiometry of nanocrystalline ceria // CrystEngComm. — 2010. — V. 12, No. 11. — P. 3531–3533.

7. Ivanov V.K., Shcherbakov A.B., Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide // Russ. Chem. Rev. — 2009. — V. 78. — P. 855–871.

8. Zholobak N.M., Ivanov V.K., Shcherbakov A.B., Shaporev A.S., Polezhaeva O.S., Baranchikov A.Ye., Spivak N.Ya., Tretyakov Yu.D. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions // J. Photochem. Photobiol. B. — 2011. — V. 102. — P. 32–38.

9. Chen J., Patil S., Seal S., McGinnis J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides // Nat. Nanotechnol. — 2006. — V. 1. — P. 142–150.

10. Chen J., Patil S., Seal S., et al. Nanoceria particles prevent ROI-induced blindness // Adv. Exp. Med. Biol. — 2008. — V. 613. — P. 53–59.

11. Kharton V.V., Figueiredo F.M., Navarro L., Naumovich E.N., Kovalevsky A.V., Yaremchenko A.A., Viskup A.P., Carneiro A., Marques F.M.B., Frade J.R. Ceria-based materials for solid oxide fuel cells // J. Mater. Sci. — 2001. — V. 36. — P. 1105–1117.

12. Anjana P.S., Joseph T., Sebastian M.T. Microwave dielectric properties of (1-x)CeO2-xRE2O3 (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb and Y) (0 ⩽ x ⩽ 1) ceramics // J. Alloys Comp. — 2010. — V. 490. — P. 208–213.

13. Babu S., Schulte A., Seal S. Defects and symmetry influence on visible emission of Eu doped nanoceria // Appl. Phys. Lett. — 2008. — V. 92. — 123112.

14. Louis C., Bazzi R., Marquette C.A., Bridot J., Roux S., Ledoux G., Mercier B., Blum L., Perriat P., Tillement O. Nanosized hybrid particles with double luminescence for biological labeling // Chem. Mater. — 2005. — V. 17. — P. 1673-1682.

15. Bridot J., Faure A., Laurent S., Riviere C., Billotey C., Hiba B., Janier M., Josserand V., Coll J., Elst L.V., Muller R., Roux S., Perriat P., Tillement O. J. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging // Am. Chem. Soc. — 2007. — V. 129. — P. 5076–5084.

16. Иванов В.К., Полежаева О.С., Щербаков А.Б., Гиль Д.О., Третьяков Ю.Д. Гидротермальномикроволновой синтез стабильных золей нанокристаллического диоксида церия для биомедицинских применений // Журн. неорган. химии. — 2010. — Т. 55. — C. 3–8.

17. Wang S., Chen S., Navrotsky A. et al. Modified polyol-mediated synthesis and consolidation of Gd-doped ceria nanoparticles // Solid State Ionics. — 2010. — V. 181. — P. 372-378.

18. Chandradass J., Nam B., Kim K.H. Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process // Coll. Surf. A. — 2009. — V. 348. — P. 130–136.

19. Dikmen S., Shuk P., Greenblatt M., Gocmez H. Hydrothermal synthesis and properties of Ce1−𝑥Gd𝑥O2−𝛿 solid solutions // Solid State Sci. — 2002. — V. 4. — P. 585–590.

20. Liang J., Zhu Q., Xie Z., Huang W., Hu C. Low-temperature sintering behaviors of nanosized Ce0.8Gd0.2O1.9 powder synthesized by co-precipitation combined with supercritical drying // J. Power Sources. — 2009. — V. 194. — P. 640–645.

21. Jadhav L.D., Chourashiya M.G., Jamale A.P. et al. Synthesis and characterization of nano-crystalline Ce1−𝑥Gd𝑥O2−𝑥/2 (x=0–0.30) solid solutions // J. Alloys Comp. — 2010. — V. 506. — P. 739–744.

22. Hirata Y., Matsunaga N., Murao M. Synthesis of gadolinium-doped ceria powders by electrolysis of aqueous solutions // J. Am. Ceram. Soc. — 2009. — 92(S1). — S11–S15.

23. Kang H.S., Sohn J.R., Kang Y.C., Jung K.Y., Park S.B. The characteristics of nano-sized Gd-doped CeO2 particles prepared by spray pyrolysis // J. Alloys Comp. — 2005. — V. 398. — P. 240–244.

24. Wang S., Maeda K. Direct formation of crystalline gadolinium-doped ceria powder via polymerized precursor solution // J. Amer. Ceram. Soc. — 2002. — V. 85. — P. 1750–1752.

25. Yang T., Xia D. Self-combustion synthesis and oxygen storage properties of mesoporous gadolinia-doped ceria nanotubes // Mat. Chem. Phys. — 2010. — V. 123. — P. 816–820.

26. Sin A., Dubitsky Yu., Zaopo A. et al. Preparation and sintering of Ce1−𝑥Gd𝑥O2−𝑥/2 nanopowders and their electrochemical and EPR characterization // Solid State Ionics. — 2004. — V. 175. — P. 361–366.

27. Kossoy A., Feldman Y., Korobko R. et al. Influence of Point-Defect Reaction Kinetics on the Lattice Parameter of Ce0.8Gd0.2O1.9 // Adv. Funct. Mater. — 2009. — V. 19. — P. 634–641.

28. Petricek V., Dusek M., Palatinus L. Jana2006. The crystallographic computing system. — Institute of Physics, Praha, Czech Republic, 2006.

29. Иванов В.К., Полежаева О.С., Шапорев А.С., Баранчиков А.Е., Щербаков А.Б., Усатенко А.В. Синтез и исследование термической устойчивости золей нанокристаллического диоксида церия, стабилизированных лимонной и полиакриловой кислотами // Журн. неорган. химии. — 2010. — T. 55. — C. 368–373.

30. Иванов В.К., Полежаева О.С., Щербаков А.Б., Гиль Д.О., Третьяков Ю.Д. Гидротермальномикроволновой синтез стабильных золей нанокристаллического диоксида церия для биомедицинских применений // Журн. неорган. химии. — 2010. — T. 55. — C. 3–8.

31. Иванов В.К., Щербаков А.Б., Жолобак Н.М., Полежаева О.С. Необычные свойства диоксида церия // Природа. — 2011. — T. 3. — C. 47–57.


Review

For citations:


Gasymova G.A., Ivanova O.S., Baranchikov A.Ye., Shcherbakov A.B., Ivanov V.K., Tretyakov Yu.D. Synthesis of aqueous sols of nanocrystalline ceria doped with gadolinia. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(3):113-120. (In Russ.)

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)