Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Attractive or repulsive Casimir effect and boundary conditions

Аннотация

The Casimir force between two identical bodies, although highly dependent on their geometry and structure of boundaries, is always attractive. However, this force can become repulsive if the nature of the two boundaries is different. We analyze from a global perspective the analytic properties of the Casimir energy function in the space of the consistent boundary conditions ℳF for a massless scalar field confined between two homogeneous parallel plates. The analysis allow us to completely characterize the boundary conditions which give rise to attractive and repulsive Casimir forces. In the interface between both regimes there is a very interesting family of boundary conditions which do not generate any type of Casimir force. We also find Casimirless boundary conditions which are invariant under the renormalization group flow. The conformal invariant boundary conditions which do not generate a Casimir force have not yet been exploited in string theory but open new interesting possibilities.

Об авторах

M. Asorey
Universidad de Zaragoza
Испания


J.M. Mu˜noz-Casta˜neda
Universit¨at Leipzig
Германия


Список литературы

1. Casimir H. B. G. // Proc. K. Ned. Akad. Wet. — 1948. — V. 51. — P.793

2. Miloni P. The Quantum Vacuum: An Introduction To Quantum Electrodynamics. — San Diego: Academic Press, 1994.

3. Grib A. A., Mamaev S. G., Mostepanenko V. M. Vacuum Quantum Effects in Strong Fields. — St. Petersburg: Friedman Laboratory Publishing, 1994.

4. Mostepanenko V. M., Trunov N. N. The Casimir effect and its applications. — Oxford: Clarendon, 1997.

5. Bordag M., Mohideen U., Mostepanenko V. M. // Phys. Rep. — 2001. — 353.

6. Milton K. A. The Casimir Effect: Physical Manifestations of Zero-point Energy, World Scientific, Singapore, 2001.

7. Klimchitskaya G. L., Mohideen U., Mostepanenko V. M. // Rev. Mod. Phys. — 2009. — V. 81. — P.1827.

8. Bordag M., Klimchitskaya G. L., Mohideen U., Mostepanenko V. M. Advances in the Casimir Effect. — Oxford University Press, 2009.

9. Kenneth O., Klich I. // Phys. Rev. Lett. — 2006. — V. 97. — P.160401

10. Munday J. N., Capasso F., Parsegian V. A. // Nature. — 2009. — V. 457. — P.170

11. Asorey M., Ibort A., Marmo G. // Int. J. Mod. Phys. A. — 2005. — V. 20. — P.1001.

12. Asorey M., Ibort A., Marmo G., Mu˜noz Casta˜neda J. M., In preparation.

13. Asorey M., Mu˜noz Casta˜neda J. M. // Intern. J. Theor. Phys. — 2011. — V. 50. — P.2211

14. Mu˜noz-Casta˜neda J.M. // Ph. D. dissertation Zaragoza U., 2009.

15. Kre˘ın M. G. // Mat. Sb. — 1947. — V. 62. — P. 431 (In Russian).

16. Vishik V. I. // Trudy Mosc. Mat. Obsv. — 1952. — V. 1. — P. 187. Translated in Amer. Math. Soc. Transl. — 1963. — V. 24. — P. 107.

17. Grubb G. // Ann. Scuola Norm. Sup. Pisa. — 1968. — V. 22. — P. 425.

18. Grubb G. // Bull. Amer. Math. Soc. — 2006. — V. 43. — P. 227.

19. Kochube˘ı A. N. Math. Notes. — 1975. — V. 17. — P. 25.

20. Gorbachuk V. I., Gorbachuk M. L. Boundary value problems for operator differential equations. — Kluwer, Dordrecht, 1991.

21. Derkach V. A., Malamud M. M. On the Weyl function and Hermitian operators with gaps // Soviet Math. Doklady. — 1987. — V. 35. — P. 393–398.

22. Malamud M. M., Mogilevskii V. I. // Dop. Nation. Akad. Nauk. Ukr. — 1997. — V. 1. — P. 30.

23. Malamud M. M., Mogilevskii V. I. // Meth. Funct. Anal. Topology – 2002. — V. 8.

24. Bruening J., Geyler V., Pankrashkin K. // Rev. Math. Phys. — 2008. — V. 20.

25. Asorey M., Garcia-Alvarez D., Mu˜noz-Casta˜neda J.M. // J. Phys. — 2006. — A39. — P. 6127.

26. Asorey M., Garcia-Alvarez D., Mu˜noz-Casta˜neda J.M. // J. Phys. — 2006. — A40. — P. 6767.

27. Asorey M., Mu˜noz Casta˜neda J. M. // J. Phys. A – 2008. — V. 41. — P.304004

28. Asorey M., Marmo G., Mu˜noz-Casta˜neda J. M. The Casimir effect and Cosmology, Ed. Odintsov et al. — Tomsk State Ped. Univ. Press, 2009. — 153 p.

29. Emig T., Graham N., Jaffe R. L., Kardar M. // Phys. Rev. Lett. — 2007. — V. 99. — P. 170403.

30. Kirsten K., McKane A. J. // Ann. Phys. — 2003. — 308 – P.502; // J. Phys. — 2004. — A37. — P. 4649.

31. Elizalde E., Romeo A. // Phys. Rev. — 1989. — D40. — P. 436.

32. Elizalde E. Ten Physical applications of Spectral Zeta Functions // In: Lecture Notes in Physics, Vol. 35. — Berlin: Springer-Verlag, 1995.

33. Romeo A., Saharian A.A. // J.Phys. — 2002. — A35. — P. 1297.

34. Elizalde E. // J. Phys. — 2003. — A36. — P. 567.


Рецензия

Для цитирования:


 ,   . Наносистемы: физика, химия, математика. 2011;2(4):20-31.

For citation:


Asorey M., Mu˜noz-Casta˜neda J. Attractive or repulsive Casimir effect and boundary conditions. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(4):20-31.

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)