Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Landau-Zener effect for a quasi-2D periodic sandwich

Abstract

Bloch-waves in 1D periodic lattices are typically constructed based on the transfer-matrix approach, with a complete system of solutions of the Cauchy problem on a period. This approach fails for the multi-dimensional Schr¨odinger equations on periodic lattices, because the Cauchy problem is ill-posed for the associated elliptic partial differential equations. In our previous work [8] we suggested a different procedure for the calculation of the Bloch functions for the 2D Schr¨odinger equation based on the Dirichlet-to-Neumann map substituted for the transfer -matrix. In this paper we suggest a method of calculation of the dispersion function and Bloch waves of quasi-2D periodic lattices, in particular of a quasi-2D sandwich, based on construction of a fitted solvable model. 

About the Authors

N. Bagraev
A. F. Ioffe Physico-Technical Institute, Russian Academy of Sciences
Russian Federation

St. Petersburg



G. Martin
Massey University, Albany Campus
New Zealand

Professor, NZ Institute for Advanced study



B. S. Pavlov
Massey University, Albany Campus; St. Petersburg University
Russian Federation

Professor, DSc., NZ Institute for Advanced study; V. Fock Institute for Physics at Physical Faculty

Saint Petersburg



A. Yafyasov
St. Petersburg University
Russian Federation

Professor, DScV, Fock Institute for Physics at Physical Faculty

Saint Petersburg



References

1. Akhiezer N.I., Glazman I.M. Theory of Linear Operators in Hilbert Space, Vol. 1. — New York: Frederick Ungar Publ., 1966. Translated from Russian by M. Nestel.

2. Adamyan V., Pavlov B. High-Temperature superconductivity as a result of a simple and flat bands overlapping // Solid State Physics. — 1992. — V. 34, No. 2. — P. 626–635.

3. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. Solvable models in quantum mechanics. — New York: Springer-Verlag, 1988.

4. Albeverio S., Kurasov P. Singular Perturbations of Differential Operators. — London Math. Society Lecture Note Series, Vol. 271. — Cambridge University Press, 2000.

5. Bagraev N., Buravlev A., Kljachkin L., Maljarenko A., Gehlhoff W., Romanov Yu., Rykov S. Local tunnel spectroscopy of silicon structures // Physics and Techniques of Semiconductors. — 2005. — V. 39, No. 6. — P. 716–727.

6. Bagraev N., Mikhailova A., Pavlov B., Prokhorov L., Yafyasov A. Parameter regime of a resonance quantum switch // Phys. Rev. B. — 2005. — V. 71. — 165308, pp. 1–16.

7. Bagraev N., Klyachkin L., Kudryavtsev A., Malyarenko A., Romanov V. Superconductor properties for silicon nanostructures // In: Superconductivity theory and application, Ed. by A. Luiz, SCIVO, Chapt. 4, 2010. — P. 69–92.

8. Bagraev N., Martin G., Pavlov B. Landau-Zener Phenomenon on a double of weakly interacting quasi-2d lattices // In: Progress in Computational Physics: Wave propagation in periodic Media, Bentham Science publications (PiCP), 2010.01.06. — P. 61–64.

9. Berezin F.A., Faddeev L.D. A remark on Schr¨odinger equation with a singular potential // Dokl. AN SSSR. — 1961. — V. 137. — P. 1011–1014.

10. Br¨uning J., Martin G., Pavlov B. Calculation of the Kirchhoff coefficients for the Helmholtz resonator // Russ. J. Math. Phys. — 2009. — V. 16, No. 2. —P. 188–207.

11. Callaway J. Energy band theory. — New York—London: Acacemic Press, 1964.

12. Demkov Y.N., Kurasov P.B., Ostrovski V.N. Double-periodical in time and energy solvable system with two interacting set of states // J. Physics A, Math. General, 28 (1995) p.434.

13. Firsova N., Ktitorov S. Electron’s scattering in the monolayer graphen with the short range impurites // Phys. Letters A. — 2010. — V. 174. — P. 1270–1273.

14. Fox C., Oleinik V., Pavlov B. A Dirichlet-to-Neumann approach to resonance gaps and bands of periodic networks // Proceedings of the Conference: Operator Theory and mathematical Physics, Birmingham, Alabama, 2005. In: Contemporary Mathematics. — 2006. — V. 412. — P. 151–169.

15. Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for operator differential equations // Translated and revised from the Russian, 1984. Mathematics and its Applications (Soviet Series), Vol. 48. Dordrecht: Kluwer Academic Publishers Group, 1991.

16. Kittel C. Quantum Theory of Solids, Chapter 9. — New York—London: John Wiley & sons, inc., 1962.

17. Krasnosel’skij M.A. On selfadjoint extensions of Hermitian Operators // Ukr. Mat. Zh. — 1949. — V. 1. — P. 21–38.

18. Mennicken R., Shkalikov A. Spectral decomposition of symmetric operator-matrices // Mathematische Nachrichten. — 1996. — V. 179. — P. 259–273.

19. Madelung O. Festk¨orpertheory. Bd. I, II, Ch. IV. — Berlin, Heidelberg, New York: Springer Verlag, 1972.

20. Novoselov K., Geim A., Morozov S., Jiang D., Katsnelson I., Grigorieva I., Dubonos S. Two-dimensional gas of massless Dirac fermions in graphen // Nature. — 2005. — V. 438. — P. 197–200.

21. Pavlov B. The theory of extensions and explicitly solvable models // Uspekhi. Mat. Nauk. — 1987. — V. 42, No. 6 (258). — P. 99–131.

22. Pavlov B. The spectral aspect of superconductivity - the pairing of electrons // Vestnik Leningr. Uni. Math. Math. — 1987. — V. 3. — P. 43–49.

23. Pavlov B. S-Matrix and Dirichlet-to-Neumann Operators // In: Encyclopedia of Scattering, ed. R. Pike, P. Sabatier, Academic Press, Harcourt Science and Tech. Company, 2001. — P. 1678–1688.

24. Pospescu-Pampu P. Resolution of curves and surfaces // Lecture notes in Summer School of Resolution of Singularities, June 2006, Trieste, Italy.

25. Shirokov J. Strongly singular potentials in three-dimensional Quantum Mechanics // Teor. Mat. Fiz. 42 1 (1980) 45-49

26. Sylvester J., Uhlmann G. The Dirichlet to Neumann map and applications // Proceedings of the Conference “Inverse problems in partial differential equations”, Arcata, 1989. In: SIAM, Philadelphia. — 1990. — V. 101.

27. Titchmarsh E.C. Eigenfunction expansion asociated with second -order differential equation, Part II, Chapter XXI. — Oxford at the clarendon press, 1958.

28. Yafyasov A., Bogevol’nov V., Zelenin C. Manifestation of dimensional quantization of space-charge region of Carbon on differential capacitance and surface cons=ductivity measurements // Russian Academy Doklady, Electrochemie. — 1989. — V. 25. — P. 536–538.

29. Yafyasov A., Bogevolnov V., Fursey G., Pavlov B., Polyakov M., Ibragimov A. Low-threshold emission from carbon nano-structures // Ultramicroscopy. — 2011. — V. 111. — P. 409–414.

30. Yafyasov A., Martin G., Pavlov B. Resonance one-body scattering on a junction // Nanosystems: Physics, Chemistry, Mathematics. — 2010. — V. 1, No. 1. — P. 108–147.

31. Zener C. Non-adiabatic crossing of energy levels. — Proc. Royal Soc. A. — 1932. — V. 137. — P. 696.

32. Ziman J.,Mott N., Hirsch P. The Physics of Metals. — London, Cambridge, 1969.

33. Ziman J. Electrons and phonons: the theory of transport phenomena in solids. — Oxford University Press, 1960.


Review

For citations:


Bagraev N., Martin G., Pavlov B.S., Yafyasov A. Landau-Zener effect for a quasi-2D periodic sandwich. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(4):32-50.

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)