Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Landau-Zener effect for a quasi-2D periodic sandwich

Аннотация

Bloch-waves in 1D periodic lattices are typically constructed based on the transfer-matrix approach, with a complete system of solutions of the Cauchy problem on a period. This approach fails for the multi-dimensional Schr¨odinger equations on periodic lattices, because the Cauchy problem is ill-posed for the associated elliptic partial differential equations. In our previous work [8] we suggested a different procedure for the calculation of the Bloch functions for the 2D Schr¨odinger equation based on the Dirichlet-to-Neumann map substituted for the transfer -matrix. In this paper we suggest a method of calculation of the dispersion function and Bloch waves of quasi-2D periodic lattices, in particular of a quasi-2D sandwich, based on construction of a fitted solvable model. 

Ключевые слова


Об авторах

N. Bagraev
A. F. Ioffe Physico-Technical Institute, Russian Academy of Sciences
Россия


G. Martin
Massey University, Albany Campus
Новая Зеландия


B. Pavlov
Massey University, Albany Campus; St. Petersburg University
Россия


A. Yafyasov
St. Petersburg University
Россия


Список литературы

1. Akhiezer N.I., Glazman I.M. Theory of Linear Operators in Hilbert Space, Vol. 1. — New York: Frederick Ungar Publ., 1966. Translated from Russian by M. Nestel.

2. Adamyan V., Pavlov B. High-Temperature superconductivity as a result of a simple and flat bands overlapping // Solid State Physics. — 1992. — V. 34, No. 2. — P. 626–635.

3. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. Solvable models in quantum mechanics. — New York: Springer-Verlag, 1988.

4. Albeverio S., Kurasov P. Singular Perturbations of Differential Operators. — London Math. Society Lecture Note Series, Vol. 271. — Cambridge University Press, 2000.

5. Bagraev N., Buravlev A., Kljachkin L., Maljarenko A., Gehlhoff W., Romanov Yu., Rykov S. Local tunnel spectroscopy of silicon structures // Physics and Techniques of Semiconductors. — 2005. — V. 39, No. 6. — P. 716–727.

6. Bagraev N., Mikhailova A., Pavlov B., Prokhorov L., Yafyasov A. Parameter regime of a resonance quantum switch // Phys. Rev. B. — 2005. — V. 71. — 165308, pp. 1–16.

7. Bagraev N., Klyachkin L., Kudryavtsev A., Malyarenko A., Romanov V. Superconductor properties for silicon nanostructures // In: Superconductivity theory and application, Ed. by A. Luiz, SCIVO, Chapt. 4, 2010. — P. 69–92.

8. Bagraev N., Martin G., Pavlov B. Landau-Zener Phenomenon on a double of weakly interacting quasi-2d lattices // In: Progress in Computational Physics: Wave propagation in periodic Media, Bentham Science publications (PiCP), 2010.01.06. — P. 61–64.

9. Berezin F.A., Faddeev L.D. A remark on Schr¨odinger equation with a singular potential // Dokl. AN SSSR. — 1961. — V. 137. — P. 1011–1014.

10. Br¨uning J., Martin G., Pavlov B. Calculation of the Kirchhoff coefficients for the Helmholtz resonator // Russ. J. Math. Phys. — 2009. — V. 16, No. 2. —P. 188–207.

11. Callaway J. Energy band theory. — New York—London: Acacemic Press, 1964.

12. Demkov Y.N., Kurasov P.B., Ostrovski V.N. Double-periodical in time and energy solvable system with two interacting set of states // J. Physics A, Math. General, 28 (1995) p.434.

13. Firsova N., Ktitorov S. Electron’s scattering in the monolayer graphen with the short range impurites // Phys. Letters A. — 2010. — V. 174. — P. 1270–1273.

14. Fox C., Oleinik V., Pavlov B. A Dirichlet-to-Neumann approach to resonance gaps and bands of periodic networks // Proceedings of the Conference: Operator Theory and mathematical Physics, Birmingham, Alabama, 2005. In: Contemporary Mathematics. — 2006. — V. 412. — P. 151–169.

15. Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for operator differential equations // Translated and revised from the Russian, 1984. Mathematics and its Applications (Soviet Series), Vol. 48. Dordrecht: Kluwer Academic Publishers Group, 1991.

16. Kittel C. Quantum Theory of Solids, Chapter 9. — New York—London: John Wiley & sons, inc., 1962.

17. Krasnosel’skij M.A. On selfadjoint extensions of Hermitian Operators // Ukr. Mat. Zh. — 1949. — V. 1. — P. 21–38.

18. Mennicken R., Shkalikov A. Spectral decomposition of symmetric operator-matrices // Mathematische Nachrichten. — 1996. — V. 179. — P. 259–273.

19. Madelung O. Festk¨orpertheory. Bd. I, II, Ch. IV. — Berlin, Heidelberg, New York: Springer Verlag, 1972.

20. Novoselov K., Geim A., Morozov S., Jiang D., Katsnelson I., Grigorieva I., Dubonos S. Two-dimensional gas of massless Dirac fermions in graphen // Nature. — 2005. — V. 438. — P. 197–200.

21. Pavlov B. The theory of extensions and explicitly solvable models // Uspekhi. Mat. Nauk. — 1987. — V. 42, No. 6 (258). — P. 99–131.

22. Pavlov B. The spectral aspect of superconductivity - the pairing of electrons // Vestnik Leningr. Uni. Math. Math. — 1987. — V. 3. — P. 43–49.

23. Pavlov B. S-Matrix and Dirichlet-to-Neumann Operators // In: Encyclopedia of Scattering, ed. R. Pike, P. Sabatier, Academic Press, Harcourt Science and Tech. Company, 2001. — P. 1678–1688.

24. Pospescu-Pampu P. Resolution of curves and surfaces // Lecture notes in Summer School of Resolution of Singularities, June 2006, Trieste, Italy.

25. Shirokov J. Strongly singular potentials in three-dimensional Quantum Mechanics // Teor. Mat. Fiz. 42 1 (1980) 45-49

26. Sylvester J., Uhlmann G. The Dirichlet to Neumann map and applications // Proceedings of the Conference “Inverse problems in partial differential equations”, Arcata, 1989. In: SIAM, Philadelphia. — 1990. — V. 101.

27. Titchmarsh E.C. Eigenfunction expansion asociated with second -order differential equation, Part II, Chapter XXI. — Oxford at the clarendon press, 1958.

28. Yafyasov A., Bogevol’nov V., Zelenin C. Manifestation of dimensional quantization of space-charge region of Carbon on differential capacitance and surface cons=ductivity measurements // Russian Academy Doklady, Electrochemie. — 1989. — V. 25. — P. 536–538.

29. Yafyasov A., Bogevolnov V., Fursey G., Pavlov B., Polyakov M., Ibragimov A. Low-threshold emission from carbon nano-structures // Ultramicroscopy. — 2011. — V. 111. — P. 409–414.

30. Yafyasov A., Martin G., Pavlov B. Resonance one-body scattering on a junction // Nanosystems: Physics, Chemistry, Mathematics. — 2010. — V. 1, No. 1. — P. 108–147.

31. Zener C. Non-adiabatic crossing of energy levels. — Proc. Royal Soc. A. — 1932. — V. 137. — P. 696.

32. Ziman J.,Mott N., Hirsch P. The Physics of Metals. — London, Cambridge, 1969.

33. Ziman J. Electrons and phonons: the theory of transport phenomena in solids. — Oxford University Press, 1960.


Рецензия

Для цитирования:


 ,  ,  ,   . Наносистемы: физика, химия, математика. 2011;2(4):32-50.

For citation:


Bagraev N., Martin G., Pavlov B.S., Yafyasov A. Landau-Zener effect for a quasi-2D periodic sandwich. Nanosystems: Physics, Chemistry, Mathematics. 2011;2(4):32-50.

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)