On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domain
Abstract
Let Ω ϲ R2 be a domain having a compact boundary Σ which is Lipschitz and piecewise C4 smooth, and let ѵ denote the inward unit normal vector on Σ. We study the principal eigenvalue E(β) of the Laplacian in Ω with the Robin boundary conditions მ(f)/∂(ѵ)+β(f)= 0 on Σ, where β is a positive number. Assuming that Σ has no convex corners, we show the estimate E(β ) =-β2-γmax +O(β⅔) as β→+ꚙ ,where γmax is the maximal curvature of the boundary.
About the Author
K. PankrashkinFrance
Konstantin Pankrashkin
UMR 8628, Universite Paris-Sud, Batiment 425, 91405 Orsay Cedex
http://www.math.u-psud.fr/pankrash/
References
1. G. Del Grosso, M. Campanino. A construction of the stochastic process associated to heat diffusion in a polygonal domain. Bolletino Unione Mat. Ital., 13-B, P. 876–895 (1976).
2. A.A. Lacey, J.R. Ockendon, J. Sabina. Multidimensional reaction diffusion equations with nonlinear boundary conditions. SIAM J. Appl. Math., 58, P. 1622–1647 (1998).
3. T. Giorgi, R. Smits. Eigenvalue estimates and critical temperature in zero fields for enhanced surface super conductivity. Z. Angew. Math. Phys., 57, P. 1–22 (2006).
4. Y. Lou, M. Zhu. A singularly perturbed linear eigenvalue problem in C1 domains. Pacific J. Math., 214, P. 323–334 (2004).
5. D. Daners, J.B. Kennedy. On the asymptotic behaviour of the eigenvalues of a Robin problem. Differential Integr. Equ., 23, P. 659–669 (2010).
6. M. Levitin, L. Parnovski. On the principal eigenvalue of a Robin problem with a large parameter. Math. Nachr., 281, P. 272–281 (2008).
7. H. Kovaˇ r´ ık. Eigenvalue asymptotic of Robin Laplace operators on two-dimensional domains with cusps. J. London Math. Soc., 83, P. 256–271 (2011).
8. E. Colorado, J. Garc´ ıa-Meli´ an. The behavior of the principal eigenvalue of a mixed elliptic problem with respect to a parameter. J. Math. Anal. Appl., 377, P. 53–69 (2010).
9. D.Daners.Principal eigenvalues for generalised indefinite Robin problems.Potent.Anal. 38,P.1047-1069(2013)
10. R.L. Frank, L. Geisinger. Semi-classical analysis of the Laplace operator with Robin boundary conditions. Bull. Math. Sci., 2, P. 281–319 (2012).
11. T. Giorgi, R. Smits. Bounds and monotonicity for the generalized Robin problem. Z. Angew. Math. Phys., 58, P. 1–19 (2007).
12. H. Kovaˇ r´ ık, A. Laptev. Hardy inequalities for Robin Laplacians. J. Funct. Anal., 262, P. 4972–4985 (2012).
13. P. Exner, K. Yoshitomi. Asymptotics of eigenvalues of the Schr¨ odinger operator with a strong-interaction on a loop. J. Geom. Phys., 41, P. 344–358 (2002).
14. P. Exner, K. Pankrashkin. Strong coupling asymptotics for a singular Schr¨ odinger operator with an interaction supported by an open arc. Submitted, preprint http://arxiv.org/abs/1207.2271.
15. V. Lotoreichik. Note on 2D Schr¨ odinger operators with-interactions on angles and crossing lines. Nanosystems: Phys. Chem. Math., 4 (2), P. 166–172 (2013).
16. B. Helffer, A. Morame. Magnetic bottles in connection with superconductivity. J. Funct. Anal., 185, P. 604-680 (2001).
17. V. Bonnaillie-No¨ el, M. Dauge. Asymptotics for the low-lying eigenstates of the Schr¨ odinger operator with magnetic field near corners. Ann. Henri Poincar´e, 7, P. 899–931 (2006).
18. S. Fournais, B. Helffer. Accurate eigenvalue estimates for the magnetic Neumann Laplacian. Ann. Institut Fourier, 56, P. 1–67 (2006)
Review
For citations:
Pankrashkin K. On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domain. Nanosystems: Physics, Chemistry, Mathematics. 2013;4(4):474-483.